Операционная система UNIX

         

Аппаратно-независимый уровень управления памятью


Материал, приведенный в данном разделе, хотя и не отражает в полном объеме все проблемы и решения, связанные с управлением виртуальной памятью, достаточен для того, чтобы осознать важность и сложность соответствующих компонентов операционной системы. В любой операционной системе управление виртуальной памятью занимает центральное место. Когда-то Игорь Силин (основной разработчик известной операционной системы Дубна для БЭСМ-6) выдвинул тезис, известный в народе как "Тезис Силина": "Расходы, затраченные на управление виртуальной памятью, окупаются". Я думаю, что любой специалист в области операционных систем согласится с истинностью этого тезиса.

Понятно, что и разработчики ОС UNIX уделяли большое внимание поискам простых и эффективных механизмов управления виртуальной памятью (в области операционных систем абсолютно истинным является утверждение, что любое хорошее решение обязано быть простым). Но основной проблемой было то, что UNIX должен был быть мобильной операционной системой, легко переносимой на разные аппаратные платформы. Хотя на концептуальном уровне все аппаратные механизмы поддержки виртуальной памяти практически эквивалентны, реальные реализации часто весьма различаются. Невозможно создать полностью машинно-независимый компонент управления виртуальной памятью. С другой стороны, имеются существенные части программного обеспечения, связанного с управлением виртуальной памятью, для которых детали аппаратной реализации совершенно не важны. Одним из достижений ОС UNIX является грамотное и эффективное разделение средств управления виртуальной памятью на аппаратно-независимую и аппаратно-зависимую части. Коротко рассмотрим, что и каким образом удалось включить в аппаратно-независимую часть подсистемы управления виртуальной памятью ОС UNIX (ниже мы умышленно опускаем технические детали и упрощаем некоторые аспекты).

Основная идея состоит в том, что ОС UNIX опирается на некоторое собственное представление организации виртуальной памяти, которое используется в аппаратно-независимой части подсистемы управления виртуальной памятью и связывается с конкретной аппаратной реализацией с помощью аппаратно-зависимой части. В чем же состоит это абстрактное представление виртуальной памяти?


Во-первых, виртуальная память каждого процесса представляется в виде набора сегментов (рисунок 3.3).

Рис. 3.3. Сегментная структура виртуального адресного пространства

Как видно из рисунка, виртуальная память процесса ОС UNIX разбивается на сегменты пяти разных типов. Три типа сегментов обязательны для каждой виртуальной памяти, и сегменты этих типов присутствуют в виртуальной памяти в одном экземпляре для каждого типа. Сегмент программного кода содержит только команды. Реально в него помещается соответствующий сегмент выполняемого файла, который указывался в качестве параметра системного вызова exec для данного процесса. Сегмент программного кода не может модифицироваться в ходе выполнения процесса и потому возможно использование одного экземпляра кода для разных процессов.

Сегмент данных содержит инициализированные и неинициализированные статические переменные программы, выполняемой в данном процессе (на этом уровне изложения под статическими переменными лучше понимать области виртуальной памяти, адреса которых фиксируются в программе при ее загрузке и действуют на протяжении всего ее выполнения). Понятно, что поскольку речь идет о переменных, содержимое сегмента данных может изменяться в ходе выполнения процесса, следовательно, к сегменту должен обеспечиваться доступ и по чтению, и по записи. С другой стороны, поскольку мы говорим о собственных переменных данной программы, нельзя разрешить нескольким процессам совместно использовать один и тот же сегмент данных (по причине несогласованного изменения одних и тех же переменных разными процессами ни один из них не мог бы успешно завершиться).

Сегмент стека - это область виртуальной памяти, в которой размещаются автоматические переменные программы, явно или неявно в ней присутствующие. Этот сегмент, очевидно, должен быть динамическим (т.е. доступным и по чтению, и по записи), и он, также очевидно, должен быть частным (приватным) сегментом процесса.

Разделяемый сегмент виртуальной памяти образуется при подключении к ней сегмента разделяемой памяти (см. п. 3.4.1). По определению, такие сегменты предназначены для координированного совместного использования несколькими процессами. Поэтому разделяемый сегмент должен допускать доступ по чтению и по записи и может разделяться несколькими процессами.



Сегменты файлов, отображаемых в виртуальную память (см. п. 2.4.5), представляют собой разновидность разделяемых сегментов. Разница состоит в том, что если при необходимости освободить оперативную память страницы разделяемых сегментов копируются ("откачиваются") в специальную системную область подкачки (swapping space) на диске, то страницы сегментов файлов, отображаемых в виртуальную память, в случае необходимости откачиваются прямо на свое место в области внешней памяти, занимаемой файлом. Такие сегменты также допускают доступ и по чтению, и по записи и являются потенциально совместно используемыми.

На аппаратно-независимом уровне сегментная организация виртуальной памяти каждого процесса описывается структурой as, которая содержит указатель на список описателей сегментов, общий текущий размер виртуальной памяти (т.е. суммарный размер всех существующих сегментов), текущий размер физической памяти, которую процесс занимает в данный момент времени, и наконец, указатель на некоторую аппаратно-зависимую структуру, данные которой используются при отображении виртуальных адресов в физические. Описатель каждого сегмента (несколько огрубляя) содержит индивидуальные характеристики сегмента, в том числе, виртуальный адрес начала сегмента (каждый сегмент занимает некоторую непрерывную область виртуальной памяти), размер сегмента в байтах, список операций, которые можно выполнять над данным сегментом, статус сегмента (например, в каком режиме к нему возможен доступ, допускается ли совместное использование и т.д.), указатель на таблицу описателей страниц сегмента и т.д. Кроме того, описатель каждого сегмента содержит прямые и обратные ссылки по списку описателей сегментов данной виртуальной памяти и ссылку на общий описатель виртуальной памяти as.

На уровне страниц поддерживается два вида описательных структур. Для каждой страницы физической оперативной памяти существует описатель, входящий в один из трех списков. Первый список включает описатели страниц, не допускающих модификации или отображаемых в область внешней памяти какого-либо файла (например, страницы сегментов программного кода или страницы сегмента файла, отображаемого в виртуальную память). Для таких страниц не требуется пространство в области подкачки системы; они либо вовсе не требуют откачки (перемещения копии во внешнюю память), либо откачка производится в другое место. Второй список - это список описателей свободных страниц, т.е. таких страниц, которые не подключены ни к одной виртуальной памяти. Такие страницы свободны для использования и могут быть подключены к любой виртуальной памяти. Наконец, третий список страниц включает описатели так называемых анонимных страниц, т.е. таких страниц, которые могут изменяться, но для которых нет "родного" места во внешней памяти.



В любом описателе физической страницы сохраняются копии признаков обращения и модификации страницы, вырабатываемых конкретной используемой аппаратурой.

Для каждого сегмента поддерживается таблица отображения, связывающая адреса входящих в него виртуальных страниц с описателями соответствующих им физических страниц из первого или третьего списков описателей физических страниц для виртуальных страниц, присутствующих в основной памяти, или с адресами копий страниц во внешней памяти для виртуальных страниц, отсутствующих в основной памяти. (Правильнее сказать, что поддерживается отдельная таблица отображения для каждого частного сегмента и одна общая таблица отображения для каждого разделяемого сегмента.)

Введение подобной обобщенной модели организации виртуальной памяти и тщательное продумывание связи аппаратно-независимой и аппаратно-зависимой частей подсистемы управления виртуальной памятью позволило добиться того, что обращения к памяти, не требующие вмешательства операционной системы, производятся, как и полагается, напрямую с использованием конкретных аппаратных средств. Вместе с тем, все наиболее ответственные действия операционной системы, связанные с управлением виртуальной памятью, выполняются в аппаратно-независимой части с необходимыми взаимодействиями с аппаратно-зависимой частью.

Конечно, в результате сложность переноса той части ОС UNIX, которая относится к управлению виртуальной памятью, определяется сложностью написания аппаратно-зависимой части. Чем ближе архитектура аппаратуры, поддерживающей виртуальную память, к абстрактной модели виртуальной памяти ОС UNIX, тем проще перенос. Для справедливости заметим, что в подавляющем большинстве современных компьютеров аппаратура выполняет функции, существенно превышающие потребности модели UNIX, так что создание новой аппаратно-зависимой части подсистемы управления виртуальной памятью ОС UNIX в большинстве случаев не является чрезмерно сложной задачей.


В начале 1983 года компания




В начале 1983 года компания American Telephone and Telegraph Bell Laboratories (AT&T Bell Labs) объявила о выпуске UNIX System V. Впервые в истории Bell Labs было также объявлено, что AT&T будет поддерживать этот и все будущие выпуски System V. Кроме того, была обещана совместимость выпущенной версии System V со всеми будущими версиями. ОС UNIX System V включала много новых возможностей, но почти все они относились к повышению производительности (хеш-таблицы и кэширование данных). На самом деле UNIX System V являлась развитым вариантом UNIX System III. К наиболее важным оригинальным особенностям UNIX System V относится появление семафоров, очередей сообщений и разделяемой памяти.

В 1984 году USG была преобразована в Лабораторию по развитию системы UNIX (UNIX System Development Laboratories - USDL). В 1984 году USDL выпустила UNIX System V Release 2 (SVR2). В этом варианте системы появились возможности блокировок файлов и записей, копирования совместно используемых страниц оперативной памяти при попытке записи (copy-on-write), страничного замещения оперативной памяти (реализованного не так, как в BSD) и т.д. К этому времени ОС UNIX была установлена на более чем 100000 компьютеров.

В 1987 году подразделение USDL объявило о выпуске UNIX System V Release 3 (SVR3). В этой системе появились полные возможности межпроцессных взаимодействий, разделения удаленных файлов (Remote File Sharing - RFS), развитые операции обработки сигналов, разделяемые библиотеки и т.д. Кроме того, были обеспечены новые возможности по повышению производительности и безопасности системы. К концу 1987 года появилось более 750000 установок ОС UNIX, и было зарегистрировано 4,5 млн. пользователей.

На этом мы заканчиваем исторический обзор ОС UNIX, поскольку вплотную подошли к современному состоянию системы. Продолжим этот разговор в конце курса, а пока ограничимся таблицей 1.1 и рисунком генеалогического дерева ОС UNIX (заметим, что по поводу генеалогии существуют разные мнения).

Таблица 1.1.



Характерные свойства версий AT&T UNIX начиная с 1982 года

1982 System IIIИменованные программные каналы
Очереди запуска
1983 System VХеш-таблицы
Кэши буферов и inodes
Семафоры
Разделяемая память
Очереди сообщений
1984 SVR2Блокирование записей и файлов
Подкачка по требованию
Копирование по записи
1987 SVR3Межпроцессные взаимодействия (IPC)
Разделение удаленных файлов (RFS)
Развитые операции обработки сигналов
Разделяемые библиотеки
Переключатель файловых систем (FSS)
Интерфейс транспортного уровня (TLI)
Возможности коммуникаций на основе потоков
1989 SVR4Поддержка обработки в реальном времени
Классы планирования процессов
Динамически выделяемые структуры данных
Развитые возможности открытия файлов
Управление виртуальной памятью (VM)
Возможности виртуальной файловой системы (VFS)
Быстрая файловая система (BSD)
Развитые возможности потоков
Прерываемое ядро
Квоты файловых систем
Интерфейс драйвера с ядром системы
Рис. 1.1. Генеалогическое дерево ОС UNIX


Базовые библиотеки


Понятно, что теоретически любая прикладная программа, которой требуется взаимодействовать с X-сервером, могла бы работать с ним, обмениваясь сообщениями в соответствии с X-протоколом. Однако, конечно же, это неудобно. Для выполнения любого, самого простого действия с терминалом клиенту требуется обменяться несколькими сообщениями с X-сервером, причем для наиболее распространенных действий последовательность таких сообщений предопределена.

Библиотека Си-функций, которая поставляется вместе с оконной системой X и облегчает взаимодействие Си-программы с X-сервером в соответствии с X-протоколом, называется XLib. Сам X-протокол достаточно компактен, поскольку в нем специфицированы мелкие сообщения, которые, как правило, можно реально использовать только в некоторых комбинациях. XLib - это уже довольно большая библиотека (в документации системы X ее описание занимает отдельный солидный том). Это потому, что каждая функция библиотеки XLib основана на использовании нескольких протокольных сообщений (а после этого общее количество функций XLib определяется законами комбинаторики). Вместе с тем, XLib - это всего-навсего интерфейсная библиотека над X-протоколом. Если не подниматься над уровнем XLib, то для создания любого графического объекта или сценария графического протокола в каждой прикладной программе придется повторять примерно одни и те же последовательности вызовов функций XLib.

Уровнем, который позволяет использовать ранее созданные графические образы и/или заготовки интерфейсов, является библиотека Xt (X Toolkit) Intrinsics. Эта библиотека служит для создания и использования уже существующих элементов пользовательского интерфейса, называемых виджетами (widgets). Виджет - это параметризуемая заготовка части пользовательского интерфейса (кнопка, часть меню, пиктограмма и т.д.), привязываемая к окну экрана терминала. Библиотека Xt Intrinsics выполнена в объектно-ориентированном стиле, так что каждый виджет представляет собой класс, который может использоваться для порождения новых классов, представляющих собой комбинированные виджеты и т.д.

По своим идеям Xt Intrinsics является мощным средством разработки пользовательских графических интерфейсов. Однако эта библиотека разрабатывалась в MIT и в основном являлась исследовательским прототипом. Хотя несколько компаний представили в public domain собственные наборы виджетов, их общее количество оказывается недостаточным для быстрого и качественного производства графических пользовательских интерфейсов. Это позволило занять лидирующее положение на коммерческом рынке инструментальному пакету консорциума Open Software Foundation (OSF) Motif.



Базовые механизмы сетевых взаимодействий


Операционная система UNIX с самого своего возникновения была по своей сути сетевой операционной системой. Однако по причине одновременного наличия нескольких вариантов ОС (см. раздел 1) образовалось несколько альтернативных механизмов, каждый из которых обладал собственными преимуществами и недостатками. В наиболее унифицированном и стандартизированном варианте UNIX System V среди этих механизмов был наведен некоторый порядок, и в этом разделе мы приведем сравнительно краткий обзор современного положения дел.



Базовые возможности семейства командных интерпретаторов


Здесь под командным интерпретатором мы будем понимать не соответствующую программу, а отдельный сеанс ее выполнения. Если в случае компилируемых программ следует различать наличие готовой к выполнению программы и факт запуска такой программы, то в случае интерпретируемых программ приходится различать случаи наличия интерпретатора, программы, которая может быть проинтерпретирована, и запуска интерпретатора с предоставлением ему интерпретируемой программы. Основным свойством динамически выполняемой программы (неважно, является ли она предварительно откомпилированной или интерпретируемой) является наличие ее динамического контекста, в частности, набора определенных переменных, содержащих установленные в них значения.

В случае командных интерпретаторов семейства shell имеется два вида динамических контекстов выполнения интерпретируемой программы. Первый вид контекста состоит из предопределенного набора переменных, которые существуют (и обладают значениями) независимо от того, какая программа интерпретируется. В терминологии ОС UNIX этот набор переменных называется окружением или средой сеанса выполнения командной программы. С другой стороны, программа при своем выполнении может определить и установить дополнительные переменные, которые после этого используются точно так же, как и предопределенные переменные. Спецификой командных интерпретаторов семейства shell (связанной с их ориентацией на обеспечение интерфейса с операционной системой) является то, что все переменные shell-программы (сеанса выполнения командного интерпретатора) являются текстовыми, т.е. содержат строки символов.

Любая разновидность языка shell представляет собой развитый компьютерный язык, и объем этого курса не позволяет представить в деталях хотя бы один из них. Однако в следующих подразделах мы постараемся кратко познакомить вас с особенностями трех распространенных вариантов языка shell.



Библиотека системных вызовов


Базовой библиотекой любого варианта системы UNIX является библиотека системных вызовов. Сейчас невозможно найти два варианта ОС UNIX с разными названиями, наборы системных вызовов которых полностью бы совпадали. Однако, любой такой вариант поддерживает системные вызовы, которые специфицированы в стандартах, упоминаемых в разделе 7.5. К полностью стандартным системным вызовам относятся системные вызовы для работы с файлами (включая специальные файлы), системные вызовы для управления процессами (fork и семейство exec), системные вызовы класса IPC (хотя, как мы упоминали в п. 3.5.4, в UNIX System V механизм программных каналов реализован не в виде набора системных вызовов ядра ОС, а как набор библиотечных функций над пакетом TLI). Приведенное в скобках замечание на самом деле является очень важным. Пользователя, стремящегося создать мобильное приложение с использованием системных вызовов, не должны волновать детали реализации. Важно, чтобы состав системных вызовов, их интерфейсы и семантика соответствовали стандартам.

Теперь мы можем сформулировать правило прикладного мобильного программирования с использованием системных вызовов:

Проектируя и разрабатывая прикладную систему, убедитесь, что вы не используете системные вызовы, не входящие в стандарт.

Придерживаясь этого правила, с большой вероятностью вы не будете иметь проблем с переносом программы в среду другого варианта ОС UNIX по причине несовместимости наборов системных вызовов.



Библиотека ввода/вывода


Традиционной для ОС UNIX библиотекой функций более высокого уровня, чем библиотека системных вызовов, является, так называемая, стандартная библиотека ввода/вывода (stdio). Основной набор функций этой библиотеки служит для выполнения файловых операций с буферизацией данных в памяти пользовательского процесса. Библиотека ввода/вывода фактически стандартизована очень давно, и ей можно безопасно пользоваться в любой операционной среде. В частности, единообразные библиотеки ввода/вывода поддерживаются во всех современных реализациях системы программирования языка Си, выполненных не в среде ОС UNIX (включая реализации в среде MS-DOS).

Поэтому можно сформулировать правило мобильного программирования с использованием библиотеки ввода/вывода:

Если для разрабатываемой вами прикладной программы достаточно возможностей библиотеки ввода/вывода, ограничьтесь использованием этой библиотеки.

Придерживаясь этого правила, с большой вероятностью вы не будете иметь проблем, связанных с вводом/выводом, при переносе вашей программы в любую операционную среду (не обязательно UNIX-ориентированную), в которой поддерживается стандартная библиотека ввода/вывода.



Бинарная совместимость


Если обычно достижение мобильности прикладных программ является целью прикладных программистов, то иногда достижение бинарной совместимости при выполнении прикладных программ является задачей разработчиков операционных систем. Под бинарной совместимостью операционной системы О2 с операционной системой О1 понимается возможность выполнения в среде О2 без перекомпиляции (а, возможно, и без перекомпоновки) приложений, написанных для выполнения в среде О1. Естественно, что бинарная совместимость двух операционных сред теоретически достижима только в том случае, когда обе операционные системы О1 и О2 базируются на некоторой общей аппаратной платформе (реально, чаще всего приходится слышать о бинарной совместимости разных вариантов ОС UNIX, работающих на платформах Intel).

Двоичная совместимость новой операционной системы с некоторой существующей ОС требуется в том случае, когда, во-первых, необходимо доказать пользователям, что новая система не только обладает новыми качествами, но и настолько технологична, что может выполнять существующие приложения даже без потребности их перекомпиляции. Во-вторых, двоичная совместимость позволяет немедленно сделать доступным в новой операционной среде весь накопленный в старой среде багаж приложений (исходные тексты которых будут, скорее всего, недоступны), что может оказаться очень существенным для потенциальных конечных пользователей (потребителей приложений) новой системы.



Блочные драйверы


Блочные драйверы предназначаются для обслуживания внешних устройств с блочной структурой (магнитных дисков, лент и т.д.) и отличаются от прочих тем, что они разрабатываются и выполняются с использованием системной буферизации. Другими словами, такие драйверы всегда работают через системный буферный пул. Как видно на рисунке 3.5, любое обращение к блочному драйверу для чтения или записи всегда проходит через предварительную обработку, которая заключается в попытке найти копию нужного блока в буферном пуле.

В случае, если копия требуемого блока не находится в буферном пуле или если по какой-либо причине требуется заменить содержимое некоторого обновленного буфера, ядро ОС UNIX обращается к процедуре strategy соответствующего блочного драйвера. Strategy обеспечивает стандартный интерфейс между ядром и драйвером. С использованием библиотечных подпрограмм, предназначенных для написания драйверов, процедура strategy может организовывать очереди обменов с устройством, например, с целью оптимизации движения магнитных головок на диске. Все обмены, выполняемые блочным драйвером, выполняются с буферной памятью. Перепись нужной информации в память соответствующего пользовательского процесса производится программами ядра, заведующими управлением буферами.



Bourne-shell


Bourne-shell является наиболее распространенным командным языком (и одновременно командным интерпретатором) системы UNIX. Вот основные определения языка Bourne-shell (конечно, мы приводим неформальные определения, хотя язык обладает вполне формализованным синтаксисом):

Пробел - это либо символ пробела, либо символ горизонтальной табуляции.

Имя - это последовательность букв, цифр или символов подчеркивания, начинающаяся с буквы или подчеркивания.

Параметр - имя, цифра или один из символов *, @, #, ?, -, $, !.

Простая команда - последовательность слов, разделенных пробелами. Первое слово простой команды - это ее имя, остальные слова - аргументы команды (имя команды считается ее нулевым аргументом - см. п. 5.2.1).

Метасимволы. Аргументы команды (которые обычно задают имена файлов) могут содержать специальные символы (метасимволы) "*", "?", а также заключенные в квадратные скобки списки или указанные диапазоны символов. В этом случае заданное текстовое представление параметра называется шаблоном. Указание звездочки означает, что вместо указанного шаблона может использоваться любое имя, в котором звездочка заменена на произвольную текстовую строку. Задание в шаблоне вопросительного знака означает, что в соответствующей позиции может использоваться любой допустимый символ. Наконец, при использовании в шаблоне квадратных скобок для генерации имени используются все указанные в квадратных скобках символы. Команда применяется в цикле для всех осмысленных сгенерированных имен.

Значение простой команды - это код ее завершения, если команда заканчивается нормально, либо 128 + код ошибки, если завершение команды не нормальное (все значения выдаются в текстовом виде).

Команда - это либо простая команда, либо одна из управляющих конструкций (специальных встроенных в язык конструкций, предназначенных для организации сложных shell-программ).

Командная строка - текстовая строка на языке shell.

shell-процедура (shell-script) - файл с программой, написанной на языке shell.


Конвейер - последовательность команд, разделенных символом "|". При выполнении конвейера стандартный вывод каждой команды конвейера, кроме последней, направляется на стандартный вход следующей команды. Интерпретатор shell ожидает завершения последней команды конвейера. Код завершения последней команды считается кодом завершения всего конвейера.

Список - последовательность нескольких конвейеров, соединенных символами ";", "&", "&&", "", и, может быть, заканчивающаяся символами ";" или "&". Разделитель между конвейерами ";" означает, что требуется последовательное выполнение конвейеров; "&" означает, что конвейеры могут выполняться параллельно. Использование в качестве разделителя символов "&&" (и "") означает, что следующий конвейер будет выполняться только в том случае, если предыдущий конвейер завершился с кодом завершения "0" (т.е. абсолютно нормально). При организации списка символы ";" и "&" имеют одинаковые приоритеты, меньшие, чем у разделителей "&&" и "".

В любой точке программы может быть объявлена (и установлена) переменная с помощью конструкции "имя = значение" (все значения переменных - текстовые). Использование конструкций $имя или ${имя} приводит к подстановке текущего значения переменной в соответствующее слово.

Предопределенными переменными Bourne-shell, среди прочих, являются следующие:

HOME - полное имя домашнего каталога текущего пользователя;

PATH - список имен каталогов, в которых производится поиск команды, при ее указании коротким именем;

PS1 - основное приглашение shell ко вводу команды;

и т.д.

Вызов любой команды можно окружить одиночными кавычками (`), и тогда в соответствующую строку будет подставлен результат стандартного вывода этой команды.

Среди управляющих конструкций языка содержатся следующие: for и while для организации циклов, if для организации ветвлений и case для организации переключателей (естественно, все это специфически приспособлено для работы с текстовыми значениями).


C-shell


Командный язык C-shell главным образом отличается от Bourne-shell тем, что его синтаксис приближен к синтаксису языка Си (это, конечно, не означает действительной близости языков). В основном, C-shell включает в себя функциональные возможности Bourne-shell. Если не вдаваться в детали, то реальными отличиями C-shell от Bourne-shell является поддержка протокола (файла истории) и псевдонимов.

В протоколе сохраняются введенные в данном сеансе работы с интерпретатором командные строки. Размер протокола определяется установкой предопределенной переменной history, но последняя введенная командная строка сохраняется всегда. В любом месте текущей командной строки в нее может быть подставлена командная строка (или ее часть) из протокола.

Механизм псевдонимов (alias) позволяет связать с именем полностью (или частично) определенную командную строку и в дальнейшем пользоваться этим именем.

Кроме того, в C-shell по сравнению с Bourne-shell существенно расширен набор предопределенных переменных, а также введены более развитые возможности вычислений (по-прежнему, все значения представляются в текстовой форме).



Деятельность комитетов POSIX


Следует вспомнить, что наряду с версиями ОС UNIX, развивавшимися в компании AT&T (затем в USL, затем в Novell, затем...), исторически существовало еще направление BSD (Berkeley Standard Distribution), успешно поддерживаемое небольшой, но всемирно известной группой из университета г. Беркли (шт. Калифорния). В свое время (в конце 1970-х) университет получил из AT&T исходные тексты 16-разрядной ОС UNIX, на основе которых была произведена 32-разрядная система, которая сначала использовалась на компьютерах семейства VAX, а затем была перенесена на многие другие аппаратные платформы. В результате наборы системных вызовов UNIX AT&T и BSD стали значительно различаться.

Хотя большинство коммерческих реализаций UNIX основывалось на System V, UNIX BSD всегда был популярен в университетах, и общественность потребовала определения некоторого интерфейса, который являлся бы по сути объединением средств AT&T и BSD. Эта работа была начата Ассоциаций профессиональных программистов Открытых Систем UniForum, а затем продолжена в специально созданных рабочих группах POSIX (Portable Operating System Interface). В рабочих группах POSIX разрабатываются многие стандарты открытых систем, но наиболее известным и авторитетным является принятый ISO по представлению IEEE стандарт POSIX 1003.1, в котором определены минимальные требуемые средства операционной системы (по сути дела, UNIX).



Деятельность X/Open


Международная организация X/Open, которая выполняет многие работы, связанные с пропагандой и анализом использования открытых систем, кроме того, собирает и систематизирует де-юре и де-факто стандарты, имеющие промышленное значение, в так называемом X/Open Common Application Environment (CAE). Спецификаций интерфейсов средств, входящих в CAE, публикуются в многотомном документе X/Open Portability Guide (XPG).



Дополнительные библиотеки


Понятно, что при прикладном программировании используются не только библиотеки системных вызовов и ввода/вывода. Существует масса других библиотечных функций, предназначенных, например, для разнообразных преобразований форматов данных, математических вычислений и т.д. К таким библиотекам нужно относиться очень осторожно, поскольку в целях повышения эффективности соответствующие функции могут быть машинно-зависимыми и по этой причине обладать специфическими интерфейсами (хотя, скорее всего, не зависят от особенностей операционной системы). Сама по себе машинная зависимость библиотечной функции не представляет опасности, поскольку при переносе программы на компьютер с другой архитектурой все равно потребуется перекомпиляция и перекомпоновка прикладной программы, но специфичность интерфейсов может причинить большие неприятности.

Наиболее безопасным решением на сегодняшний день (при программировании на языке Си) является использование библиотек, специфицированных в стандарте языка Си. Наверное, стандартных библиотек Си окажется недостаточно в случае сложных приложений, но если при указании опции "ANSI" ваша система программирования успешно производит сборку выполняемой программы, можно быть почти уверенным, что вы не будете иметь проблем при переносе программы на компьютер, на котором установлен компилятор стандартного языка Си.

Поэтому можно сформулировать правило мобильного программирования с использованием дополнительных библиотек:

Если для разрабатываемой вами прикладной системы оказывается достаточным использование библиотек, специфицированных в стандарте языка Си, ограничьтесь использованием этих библиотек.

Если стандартных библиотек оказывается недостаточно и приходится использовать функцию из некоторой дополнительной библиотеки, поддерживаемой в вашей системе, постарайтесь проверить, насколько она стандартна. Если вы не уверены в стандартности используемой функции, то лучше напишите собственную интерфейсную функцию с известным вам интерфейсом, а при переносе прикладной программы состыкуйте эту функцию (может быть, придется ее переписать) с подходящей библиотечной функцией целевой системы (однако нет гарантии, что вам удастся ее найти).



Драйверы устройств


Любому программисту должно быть ясно, что простое объявление внешнего устройства специальным файлом не даст возможности работать с этим устройством, если не создан и соответствующим образом не подключен к системе специальный программный код, соответствующий специфике данного устройства. Как и в большинстве современных операционных систем, такого рода программный код в ОС UNIX называется драйвером устройства (в этом контексте слово драйвер лучше всего понимать в значении "управляющий").

Для профессионалов в области операционных систем драйверы ОС UNIX, в сущности, не представляют ничего нового. По-простому говоря, в любой системе драйвер устройства - это многовходовой программный модуль со своими статическими данными, который умеет инициировать работу с устройством, выполнять заказываемые пользователем обмены (на ввод или вывод данных), терминировать работу с устройством и обрабатывать прерывания от устройства. Однако, в любой операционной системе имеется своя технология разработки драйверов. В частности, в ОС UNIX различаются символьные, блочные и потоковые драйверы.

Символьные драйверы являются простейшими в ОС UNIX и предназначаются для обслуживания устройств, которые реально ориентированы на прием или выдачу произвольных последовательностей байтов (например, простой принтер или устройство ввода с перфоленты). Такие драйверы используют минимальный набор стандартных функций ядра UNIX, которые главным образом заключаются в возможности взять данные из виртуального пространства пользовательского процесса и/или поместить данные в такое виртуальное пространство.

Блочные драйверы - более сложные. Они работают с использованием возможностей системной буферизации блочных обменов ядра ОС UNIX. В число функций такого драйвера входит включение соответствующего блока данных в систему буферов ядра ОС UNIX и/или взятие содержимого буферной области в случае необходимости.

Наконец, наиболее сложной организацией отличаются потоковые драйверы. Фактически, такой драйвер представляет собой конвейер модулей, обеспечивающий многоступенчатую обработку запросов пользователя. Потоковые драйверы в среде ОС UNIX в основном предназначены для реализации доступа к сетевым устройствам, которые должны работать в соответствии с многоуровневыми сетевыми протоколами.

Подробности по поводу разных способов организации драйверов в ОС UNIX см. в разделе 3.3.

Последний момент, на который мы хотим обратить внимание в этом пункте, состоит в том, что (опять же, как и в большинстве развитых операционных систем) в ОС UNIX возможны два способа включения драйвера в состав ядра ОС. Первый способ состоит в полном включении драйвера в состав ядра на стадии генерации системы (т.е. драйвер статически объявляется частью ядра системы). Второй способ позволяет обойтись минимальным количеством статических объявлений на стадии генерации ядра (фактически, обеспечиваются лишь необходимые элементы статических таблиц). В любой момент работы системы такой драйвер может быть динамически загружен в ядро системы. После появления (статического или динамического) в ядре ОС UNIX драйверы всех разновидностей функционируют единообразно.



Другие стандарты


Перечисленные четыре стандарта, только два из которых являются официально принятыми, наиболее авторитетны для производителей операционных систем, претендующих на совместимость с ОС UNIX. Особенностью этих стандартов является их полная машинная независимость.

Имеется другая разновидность стандартов де-факто, распространяемых на некоторый класс аппаратных архитектур. Примером такого стандарта может служить документ, принятый международной организацией SPARC International документ SPARC Complience Definition, содержащий машинно-зависимые уточнения к машинно-независимым спецификациям интерфейсов. Аналогичный документ разрабатывался организацией 88/Open, связанной с RISC-процессорами фирмы Motorola.

Среди других индустриальных де-факто стандартов для современных вариантов ОС UNIX наиболее важны фактический стандарт оконной системы, поддерживаемый X Cosortium, в основе которого находится лаборатория Масачусетского технологического института (MIT), являющаяся разработчиком системы X, а также спецификации интерфейсов инструментального средства разработки графических пользовательских интерфейсов OSF/Motif, разработанные в Open Software Foundation (OSF).

Кроме того, заметим, что в OSF разработан документ OSF Application Environment Specification (AES), содержащий спецификации интерфейсов ОС OSF/1, являющей собственной реализацией OSF ОС UNIX на базе новой микроядерной технологии (правда, до сих пор в этой реализации используются фрагменты исходного текста System V). AES является расширением SVID, POSIX 1003.1 и XPG.



Другие свободно распространяемые варианты ОС UNIX


Системы семейства BSD на сегодняшний день не являются единственными свободно доступными вариантами ОС UNIX. Ниже мы коротко опишем два других варианта.



Файловая система


Как мы отмечали в разделе 2.1, понятие файла является одним из наиболее важных для ОС UNIX. Все файлы, с которыми могут манипулировать пользователи, располагаются в файловой системе, представляющей собой дерево, промежуточные вершины которого соответствуют каталогам, и листья - файлам и пустым каталогам. Примерная структура файловой системы ОС UNIX показана на рисунке 2.1. Реально на каждом логическом диске (разделе физического дискового пакета) располагается отдельная иерархия каталогов и файлов. Для получения общего дерева в динамике используется "монтирование" отдельных иерархий к фиксированной корневой файловой системе.

Замечание: в мире ОС UNIX по историческим причинам термин "файловая система" является перегруженным, обозначая одновременно иерархию каталогов и файлов и часть ядра, которая управляет каталогами и файлами. Видимо, было бы правильнее называть иерархию каталогов и файлов архивом файлов, а термин "файловая система" использовать только во втором смысле. Однако, следуя традиции ОС UNIX, мы будем использовать этот термин в двух смыслах, различая значения по контексту.

Каждый каталог и файл файловой системы имеет уникальное полное имя (в ОС UNIX это имя принято называть full pathname - имя, задающее полный путь, поскольку оно действительно задает полный путь от корня файловой системы через цепочку каталогов к соответствующему каталогу или файлу; мы будем использовать термин "полное имя", поскольку для pathname отсутствует благозвучный русский аналог). Каталог, являющийся корнем файловой системы (корневой каталог), в любой файловой системе имеет предопределенное имя "/" (слэш). Полное имя файла, например, /bin/sh означает, что в корневом каталоге должно содержаться имя каталога bin, а в каталоге bin должно содержаться имя файла sh. Коротким или относительным именем файла (relative pathname) называется имя (возможно, составное), задающее путь к файлу от текущего рабочего каталога (существует команда и соответствующий системный вызов, позволяющие установить текущий рабочий каталог).


В каждом каталоге содержатся два специальных имени, имя ".", именующее сам этот каталог, и имя "..", именующее "родительский" каталог данного каталога, т.е. каталог, непосредственно предшествующий данному в иерархии каталогов.

Рис. 2.1. Структура каталогов файловой системы

UNIX поддерживает многочисленные утилиты, позволяющие работать с файловой системой и доступные как команды командного интерпретатора. Вот некоторые из них (наиболее употребительные):

cp имя1 имя2- копирование файла имя1 в файл имя2
rm имя1- уничтожение файла имя1
mv имя1 имя2- переименование файла имя1 в файл имя2
mkdir имя- создание нового каталога имя
rmdir имя- уничтожение каталога имя
ls имя- выдача содержимого каталога имя
cat имя- выдача на экран содержимого файла имя
chown имя режим- изменение режима доступа к файлу

Файлы-каталоги


Наличие обычных файлов недостаточно для организации иерархических файловых систем. Требуется наличие каталогов, которые сопоставляют имена файлов или каталогов с их физическим описанием. Каталоги представляют собой особый вид файлов, которые хранятся во внешней памяти подобно обычным файлам, но структура которых поддерживается самой файловой системой.

Структура файла-каталога очень проста. Фактически, каталог - это таблица, каждый элемент которой состоит из двух полей: номера i-узла данного файла в его файловой системе и имени файла, которое связано с этим номером (конечно, этот файл может быть и каталогом). Если просмотреть содержимое текущего рабочего каталога с помощью команды ls -ai, то можно получить, например, следующий вывод:

inode File

number name

_________________________

33 .

122 ..

54 first_file

65 second_file

65 second_again

77 dir2

Этот вывод демонстрирует, что в любом каталоге содержатся два стандартных имени - "." и "..". Имени "." сопоставляется i-узел, соответствующий самому этому каталогу, а имени ".." - i-узел, соответствующий "родительскому" каталогу данного каталога. "Родительским" (parent) каталогом называется каталог, в котором содержится имя данного каталога. Файлы с именами "first_file" и "second_file" - это разные файлы с номерами i-узлов 54 и 65 соответственно. Файл "second_again" представляет пример так называемой жесткой ссылки: он имеет другое имя, но реально описывается тем же i-узлом, что и файл "second_file". Наконец, последний элемент каталога описывает некоторый другой каталог с именем "dir2".

Этот последний файл, как и любой обычный файл, хранится в файловой системе как набор блоков запоминающего устройства. Однако файловая система знает, что на самом деле это каталог со структурой, контролируемой файловой системой. Поэтому файлам-каталогам соответствует особый тип файла (обозначенный в их i-узлах), по отношению к которому возможно выполнение только специального набора системных вызовов:

mkdir, производящего новый каталог,

rmdir, удаляющий пустой (незаполненный) каталог,

getdents, позволяющего прочитать содержимое указанного каталога.

Отсутствует системный вызов, позволяющий прямо писать в файл-каталог. Какими бы правами вы не обладали по отношению к файлу-каталогу, прямая запись информации в него запрещена - прямое следствие фиксированной (и закрытой от пользователей) структуры файлов-каталогов. Запись в файлы-каталоги производится неявно при создании и уничтожении файлов и каталогов, однако читать из файла-каталога при наличии соответствующих прав можно (пример - стандартная утилита ls, которая как раз и пользуется системным вызовом getdents).



Файлы, отображаемые в виртуальную память


В современных версиях ОС UNIX (например, в UNIX System V.4) появилась возможность отображать обычные файлы в виртуальную память процесса с последующей работой с содержимым файла не с помощью системных вызовов read, write и lseek, а с помощью обычных операций чтения из памяти и записи в память. Заметим, что этот прием был базовым в историческом предшественнике ОС UNIX - операционной системе Multics (см. раздел 1.1).

Для отображения файла в виртуальную память, после открытия файла выполняется системный вызов mmap, действие которого состоит в том, что создается сегмент разделяемой памяти, ассоциированный с открытым файлом, и автоматически подключается к виртуальной памяти процесса (подробнее о разделяемой памяти см. п. 3.4.1). После этого процесс может читать из нового сегмента (реально будут читаться байты, содержащиеся в файле) и писать в него (реально все записи отображаются в файл). При закрытии файла соответствующий сегмент автоматически отключается от виртуальной памяти процесса и уничтожается, если только файл не подключен к виртуальной памяти некоторого другого процесса.

Несколько процессов могут одновременно открыть один и тот же файл и подключить его к своей виртуальной памяти системным вызовом mmap. Тогда любые изменения, производимые путем записи в соответствующий сегмент разделяемой памяти, будут сразу видны другим процессам.



Файлы заголовков


Использование текстовых файлов заголовков (header-файлов), которые вставляются в текст программы на языке Си с помощью директивы include препроцессора Си, является традиционной техникой программирования на языке Си в среде ОС UNIX, обеспечивающей синтаксическую правильность использования библиотечных функций (в том числе и системных вызовов) в прикладной программе. Ранее файлы заголовков, главным образом, содержали определения типов и символических констант (символические константы - это константы, которым сопоставлены имена посредством директивы define препроцессора Си), используемых в интерфейсах соответствующих библиотечных функций. Корректное применение файлов заголовков позволяло программистам не заботиться о правильности типов данных, используемых при обращении к библиотечным функциям и обработке их результатов.

Однако, традиционные файлы заголовков не гарантировали того, что набор параметров вызываемой библиотечной функции соответствовал ее интерфейсу, поскольку объявление функции, содержащее ее интерфейс, в файле компиляции отсутствовало. В лучшем случае ошибки такого рода устойчиво проявлялись во время выполнения программы, хотя далеко не всегда было просто понять их природу. В худшем случае ошибка возникала при переносе программы, поскольку одноименные библиотечные функции действительно обладали разными интерфейсами в разных средах, и в исходной операционной среде ошибки в параметрах не было.

Эту проблему удалось решить (хотя и не абсолютно) за счет введения в язык Си понятия прототипа функции. Грубо говоря, прототип функции - это часть ее объявления, содержащая только интерфейс (без тела функции). Наличие прототипа любой функции допускается в любом файле компиляции, даже не обязательно содержащем вызов этой функции. Однако, если вызов функции содержится в файле компиляции, то набор параметров вызова должен точно соответствовать интерфейсу вызываемой функции, определенному в ее прототипе.

Дальнейший ход рассуждений очевиден. Для группы родственных библиотечных функций делается общий файл заголовков, содержащий необходимые определения типов данных и символических констант, а также набор прототипов этих библиотечных функций. После включения в файл компиляции такого файла заголовков на стадии компиляции будут обнаружены все синтаксические ошибки обращения к библиотечным функциям. В предыдущем параграфе мы отметили, что это решение не абсолютно. Это действительно так, поскольку в принципе никто не может заставить программиста на языке Си включать в текст программы все требуемые файлы заголовков. Однако, такова специфика мира программирования: каждый волен усложнять свою жизнь в такой степени, в которой ему или ей это нравится.

Последнее замечание относительно файлов заголовков. В последнее время они содержат большое количество операторов условной компиляции, относящихся большей частью к определению символических констант. Дело в том, что в зависимости от версии операционной системы (мы имеем в виду версии одной линии ОС UNIX, например, UNIX System V) значения констант, используемых с одним и тем же смыслом, часто меняются. Конечно, прикладная программа не должна зависеть от таких изменений. Наличие операторов условной компиляции внутри файла заголовков разрешает эту проблему.

Поэтому последнее правило этого раздела можно сформулировать следующим образом:

При программировании на языке Си с использованием библиотечных функций используйте все требуемые файлы заголовков. Это поможет быстрее найти ошибки и повысит мобильность прикладной программы.



HP/UX компании Hewlett-Packard, DG/UX компании Data General, AIX компании IBM


HP/UX, DG/UX и AIX обладают многими отличиями. В частности, в этих версиях ОС UNIX поддерживаются разные средства генерации графических пользовательских интерфейсов (хотя все они основаны на использовании оконной системы X), по-разному реализованы threads и т.д.

Однако все эти системы объединяет тот факт, что в основе каждой из них находится SVR 4.x. Поэтому основной набор системных и библиотечных вызовов в этих реализациях совпадает.

Заметим, что в компании IBM существовал план разработки полностью самостоятельной реализации AIX на основе микроядра. Однако в последнее время IBM отказалась от этой идеи, хотя собственное микроядро (новая реализация микроядра Mach) уже было создано.



Hurd Free Software Foundation


Проект системы Hurd явился попыткой довести до логического завершения знаменитый проект GNU Ричарда Столлмана, основателя и президента Фонда свободного программного обеспечения (Free Software Foundation - FSF). Общей целью проекта GNU является создание полномасштабной свободно распространяемой мобильной программной среды, совместимой с соответствующими коммерческими продуктами, но существенно превосходящей их по своим возможностям. FSF уже в течение многих лет распространяет высококачественные программные средства: компиляторы, отладчики, редакторы и т.д. Однако собственного ядра операционной системы у разработчиков проекта GNU не было.

Основной идеей проекта Hurd было использование в качестве основы системы готового варианта микроядра Mach, бесплатно распространяемого университетом Карнеги-Меллон. Более подробно технологию Hurd мы рассмотрим в п. 8.4.3, а пока заметим, что уже год назад система была близка к уровню бета-тестирования, однако до сих пор ее выпуск не объявлен. Сам Ричард Столлман рекомендует пока использовать LINUX совместно с продуктами линии GNU.


Операционная система Hurd на протяжении последних нескольких лет разрабатывается в Фонде свободного программного обеспечения (Free Software Foundation). По своему замыслу ОС Hurd должна была явиться последней точкой в реализации проекта GNU - проекта полной свободно распространяемой совместимой с ОС UNIX среды.

В числе основных разработчиков FSF исторически не было специалистов по внутренней организации операционных систем. В частности, поэтому при реализации Hurd был выбран подход, основанный на предоставленной университетом Карнеги-Меллон версии микроядра Mach, а также использовании готовой файловой системы из Висконсинского университета. Над микроядром в пользовательском режиме дописан набор серверов, которые, однако, в отличие от OSF1 и MiX, не реализуют напрямую возможностей системных вызовов UNIX. Реализация аналога системных вызовов выполнена в виде набора библиотечных подпрограмм, выполняемых в адресных пространствах пользовательских процессов.

ОС Hurd еще не выпущена в свет, хотя уже более года назад в ее среде работал shell, emacs, GCC и другие компоненты программного обеспечения GNU. Кроме того, пока Hurd будет доступен только на платформах Intel.

|



Идентификаторы пользователя и группы пользователей


С каждым выполняемым процессом в ОС UNIX связываются реальный идентификатор пользователя (real user ID), действующий идентификатор пользователя (effective user ID) и сохраненный идентификатор пользователя (saved user ID). Все эти идентификаторы устанавливаются с помощью системного вызова setuid, который можно выполнять только в режиме суперпользователя. Аналогично, с каждым процессом связываются три идентификатора группы пользователей - real group ID, effective group ID и saved group ID. Эти идентификаторы устанавливаются привилегированным системным вызовом setgid.

При входе пользователя в систему программа login проверяет, что пользователь зарегистрирован в системе и знает правильный пароль (если он установлен), образует новый процесс и запускает в нем требуемый для данного пользователя shell. Но перед этим login устанавливает для вновь созданного процесса идентификаторы пользователя и группы, используя для этого информацию, хранящуюся в файлах /etc/passwd и /etc/group. После того, как с процессом связаны идентификаторы пользователя и группы, для этого процесса начинают действовать ограничения для доступа к файлам. Процесс может получить доступ к файлу или выполнить его (если файл содержит выполняемую программу) только в том случае, если хранящиеся при файле ограничения доступа позволяют это сделать. Связанные с процессом идентификаторы передаются создаваемым им процессам, распространяя на них те же ограничения. Однако в некоторых случаях процесс может изменить свои права с помощью системных вызовов setuid и setgid, а иногда система может изменить права доступа процесса автоматически.

Рассмотрим, например, следующую ситуацию. В файл /etc/passwd запрещена запись всем, кроме суперпользователя (суперпользователь может писать в любой файл). Этот файл, помимо прочего, содержит пароли пользователей и каждому пользователю разрешается изменять свой пароль. Имеется специальная программа /bin/passwd, изменяющая пароли. Однако пользователь не может сделать это даже с помощью этой программы, поскольку запись в файл /etc/passwd запрещена. В системе UNIX эта проблема разрешается следующим образом. При выполняемом файле может быть указано, что при его запуске должны устанавливаться идентификаторы пользователя и/или группы. Если пользователь запрашивает выполнение такой программы (с помощью системного вызова exec), то для соответствующего процесса устанавливаются идентификатор пользователя, соответствующий идентификатору владельца выполняемого файла и/или идентификатор группы этого владельца. В частности, при запуске программы /bin/passwd процесс получит идентификатор суперпользователя, и программа сможет произвести запись в файл /etc/passwd.

И для идентификатора пользователя, и для идентификатора группы реальный ID является истинным идентификатором, а действующий ID - идентификатором текущего выполнения. Если текущий идентификатор пользователя соответствует суперпользователю, то этот идентификатор и идентификатор группы могут быть переустановлены в любое значение системными вызовами setuid и setgid. Если же текущий идентификатор пользователя отличается от идентификатора суперпользователя, то выполнение системных вызовов setuid и setgid приводит к замене текущего идентификатора истинным идентификатором (пользователя или группы соответственно).



Именованные программные каналы


Программный канал (pipe) - это одно из наиболее традиционных средств межпроцессных взаимодействий в ОС UNIX. В русской терминологии использовались различные переводы слова pipe (начиная от "трубки" и заканчивая замечательным русским словом "пайп"). Мы считаем, что термин "программный канал" наиболее точно отражает смысл термина "pipe".

Основной принцип работы программного канала состоит в буферизации байтового вывода одного процесса и обеспечении возможности чтения содержимого программного канала другим процессом в режиме FIFO (т.е. первым будет прочитан байт, который раньше всего записан). В любом случае интерфейс программного канала совпадает с интерфейсом файла (т.е. используются те же самые системные вызовы read и write).

Однако различаются два подвида программных каналов - неименованные и именованные. Неименованные программные каналы появились на самой заре ОС UNIX (см. раздел 1.2). Неименованный программный канал создается процессом-предком, наследуется процессами-потомками, и обеспечивает тем самым возможность связи в иерархии порожденных процессов. Интерфейс неименованного программного канала совпадает с интерфейсом файла (более подробно см. п. 3.4.4). Однако, поскольку такие каналы не имеют имени, им не соответствует какой-либо элемент каталога в файловой системе.

Именованному программному каналу обязательно соответствует элемент некоторого каталога и даже собственный i-узел. Другими словами, именованный программный канал выглядит как обычный файл, но не содержащий никаких данных до тех пор, пока некоторый процесс не выполнит в него запись. После того, как некоторый другой процесс прочитает записанные в канал байты, этот файл снова становится пустым. В отличие от неименованных программных каналов, именованные программные каналы могут использоваться для связи любых процессов (т.е. не обязательно процессов, входящих в одну иерархию родства). Интерфейс именованного программного канала практически полностью совпадает с интерфейсом обычного файла (включая системные вызовы open и close), хотя, конечно, необходимо учитывать, что поведение канала отличается от поведения файла (подробности см. в п. 3.4.4).



Интерфейс пользователя


Традиционный способ взаимодействия пользователя с системой UNIX основывается на использовании командных языков (правда, в настоящее время все большее распространение получают графические интерфейсы). После входа пользователя в систему для него запускается один из командных интерпретаторов (в зависимости от параметров, сохраняемых в файле /etc/passwd). Обычно в системе поддерживается несколько командных интерпретаторов с похожими, но различающимися своими возможностями командными языками. Общее название для любого командного интерпретатора ОС UNIX - shell (оболочка), поскольку любой интерпретатор представляет внешнее окружение ядра системы.

Вызванный командный интерпретатор выдает приглашение на ввод пользователем командной строки, которая может содержать простую команду, конвейер команд или последовательность команд. После выполнения очередной командной строки и выдачи на экран терминала или в файл соответствующих результатов, shell снова выдает приглашение на ввод командной строки, и так до тех пор, пока пользователь не завершит свой сеанс работы путем ввода команды logout или нажатием комбинации клавиш Ctrl-d.

Командные языки, используемые в ОС UNIX, достаточно просты, чтобы новые пользователи могли быстро начать работать, и достаточно мощны, чтобы можно было использовать их для написания сложных программ. Последняя возможность опирается на механизм командных файлов (shell scripts), которые могут содержать произвольные последовательности командных строк. При указании имени командного файла вместо очередной команды интерпретатор читает файл строка за строкой и последовательно интерпретирует команды.



Интерфейс с файловой системой


Ядро ОС UNIX поддерживает для работы с файлами несколько системных вызовов. Среди них наиболее важными являются open, creat, read, write, lseek и close.

Важно отметить, что хотя внутри подсистемы управления файлами обычный файл представляется в виде набора блоков внешней памяти, для пользователей обеспечивается представление файла в виде линейной последовательности байтов. Такое представление позволяет использовать абстракцию файла при работе в внешними устройствами, при организации межпроцессных взаимодействий и т.д.

Файл в системных вызовах, обеспечивающих реальный доступ к данным, идентифицируется своим дескриптором (целым значением). Дескриптор файла выдается системными вызовами open (открыть файл) и creat (создать файл). Основным параметром операций открытия и создания файла является полное или относительное имя файла. Кроме того, при открытии файла указывается также режим открытия (только чтение, только запись, запись и чтение и т.д.) и характеристика, определяющая возможности доступа к файлу:

open(pathname, oflag [,mode])

Одним из признаков, которые могут участвовать в параметре oflag, является признак O_CREAT, наличие которого указывает на необходимость создания файла, если при выполнении системного вызова open файл с указанным именем не существует (параметр mode имеет смысл только при наличии этого признака). Тем не менее по историческим причинам и для обеспечения совместимости с предыдущими версиями ОС UNIX отдельно поддерживается системный вызов creat, выполняющий практически те же функции.

Открытый файл может использоваться для чтения и записи последовательностей байтов. Для этого поддерживаются два системных вызова:

read(fd, buffer, count) и write(fd, buffer, count)

Здесь fd - дескриптор файла (полученный при ранее выполненном системном вызове open или creat), buffer - указатель символьного массива и count - число байтов, которые должны быть прочитаны из файла или в него записаны. Значение функции read или write - целое число, которое совпадает со значением count, если операция заканчивается успешно, равно нулю при достижении конца файла и отрицательно при возникновении ошибок.


В каждом открытом файле существует текущая позиция. Сразу после открытия файл позиционируется на первый байт. Другими словами, если сразу после открытия файла выполняется системный вызов read (или write), то будут прочитаны (или записаны) первые count байтов содержимого файла (конечно, они будут успешно прочитаны только в том случае, если файл реально содержит по крайней мере count байтов). После выполнения системного вызова read (или write) указатель чтения/записи файла будет установлен в позицию count+1 и т.д.

Такой, чисто последовательный стиль работы, оказывается во многих случаях достаточным, но часто бывает необходимо читать или изменять файл с произвольной позиции (например, как без такой возможности хранить в файле прямо индексируемые массивы данных?). Для явного позиционирования файла служит системный вызов

lseek(fd, offset, origin)

Как и раньше, здесь fd - дескриптор ранее открытого файла. Параметр offset задает значение относительного смещения указателя чтения/записи, а параметр origin указывает, относительно какой позиции должно применяться смещение. Возможны три значения параметра origin. Значение 0 указывает, что значение offset должно рассматриваться как смещение относительно начала файла. Значение 1 означает, что значение offset является смещением относительно текущей позиции файла. Наконец, значение 2 говорит о том, что задается смещение относительно конца файла. Заметим, что типом данных параметра offset является long int. Это значит, что, во-первых, могут задаваться достаточно длинные смещения и, во-вторых, смещения могут быть положительными и отрицательными.

Например, после выполнения системного вызова

lseek(fd, 0, 0)

указатель чтения/записи соответствующего файла будет установлен на начало (на первый байт) файла. Системный вызов

lseek(fd, 0, 2)

установит указатель на конец файла. Наконец, выполнение системного вызова

lseek(fd, 10, 1)

приведет к увеличению текущего значения указателя на 10.

Естественно, системный вызов успешно завершается только в том случае, когда заново сформированное значение указателя не выходит за пределы существующих размеров файла.


Исследовательский UNIX


В 1975 году компания Bell Labs выпустила "Шестую редакцию" ОС UNIX, известную как V6 или Исследовательский UNIX. Эта версия системы была первой коммерчески доступной вне Bell Labs. К этому времени большая часть системы была написана на языке Си. Небольшие размеры языка и наличие сравнительно легко переносимого компилятора придавали ОС UNIX V6 новое качество реально переносимой операционной системы. Кроме того, потенциальное наличие на разных аппаратных платформах компилятора языка Си делало возможным разработку мобильного прикладного программного обеспечения.

Важный шаг в этом направлении был предпринят Деннисом Ритчи, который в 1976 году создал библиотеку ввода/вывода (stdio), ставшую фактическим стандартом различных систем программирования на языке Си. С использованием stdio стало возможно создавать мобильные прикладные программы, действительно независящие от особенностей аппаратуры процессора и внешних устройств.

Примерно в это же время Кен Томпсон во время своего академического отпуска посетил университет г. Беркли и установил там UNIX V6 на компьютере PDP-11/70. Билл Джой (основатель BSD - Berkeley Software Distribution, а впоследствии основатель и вице-президент компании Sun Microsystems) был тогда дипломником этого университета.



Ядро ОС UNIX


Как и в любой другой многопользовательской операционной системе, обеспечивающей защиту пользователей друг от друга и защиту системных данных от любого непривилегированного пользователя, в ОС UNIX имеется защищенное ядро, которое управляет ресурсами компьютера и предоставляет пользователям базовый набор услуг.

Следует заметить, что удобство и эффективность современных вариантов ОС UNIX не означает, что вся система, включая ядро, спроектирована и структуризована наилучшим образом. Как мы показали в первой части курса, ОС UNIX развивалась на протяжении многих лет (это первая в истории операционная система, которая продолжает завоевывать популярность в таком зрелом возрасте - уже больше 25 лет). Естественно, наращивались возможности системы, и, как это часто бывает в больших системах, качественные улучшения структуры ОС UNIX не поспевали за ростом ее возможностей.

В результате, ядро большинства современных коммерческих вариантов ОС UNIX (как мы отмечали ранее, почти все они основаны на UNIX System V) представляет собой не очень четко структуризованный монолит большого размера. По этой причине программирование на уровне ядра ОС UNIX продолжает оставаться искусством (если не считать отработанной и понятной технологии разработки драйверов внешних устройств). Эта недостаточная технологичность организации ядра ОС UNIX многих не удовлетворяет. Отсюда стремление к полному воспроизведению среды ОС UNIX при полностью иной организации системы (в частности, с применением микроядерного подхода, который мы кратко рассмотрим в конце курса).

По причине наибольшей распространенности в этом подразделе мы в основном обсуждаем ядро UNIX System V (можно считать его традиционным). В конце курса мы обсудим отличия в организации ядра других ветвей иерархии вариантов ОС UNIX.



Язык и интерпретатор Tcl/Tk


Продукт Tcl/Tk в действительности представляет собой два связанных программных пакета, которые совместно обеспечивают возможность разработки и использования приложений с развитым графическим пользовательским интерфейсом. Название Tcl относится к "командному языку инструментальных средств - tool command language", и, как не странно, его рекомендуется произносить "тикл". Это простой командный язык для управления приложениями и расширения их возможностей. Язык Tcl является "встраиваемым": его интерпретатор реализован в виде библиотеки функций языка Си, так что интерпретатор может быть легко пристыкован к любой прикладной программе, написанной на языке Си.

Tk (рекомендуемое произношение - "ти-кей") является библиотекой Си-функций, ориентированной на облегчение создания пользовательских графических интерфейсов в среде оконной системы X (т.е., по сути дела, некоторый аналог Xt Intrinsics). С другой стороны, аналогично тому, как это делается в командных языках семейства shell, функции библиотеки Tk являются командами языка Tcl, так что любой программист может расширить командный репертуар языка Tcl путем написания новой функции на языке Си.

Совместно, Tcl и Tk обеспечивают четыре преимущества для разработчиков приложений и пользователей (мы используем здесь авторские тексты разработчиков). Во-первых, наличие командного языка Tcl дает возможность в каждом приложении использовать мощный командный язык. Все, что требуется от разработчика приложения, чтобы удовлетворить его/ее специфические потребности, - это создать несколько новых команд Tcl, требующихся приложению (и, возможно, другим приложениям - явно традиционный стиль командного программирования в ОС UNIX). После этого нужно связать прикладную программу с интерпретатором Tcl и пользоваться полными возможностями командного языка.

Вторым преимуществом использования Tcl/Tk является возможность быстрой разработки графических интерфейсов. Многие интересные оконные приложения могут быть написаны в виде скриптов языка Tcl без привлечения языков Си или Си++ (а Tcl позволяет скрыть многие несущественные детали). Как утверждают разработчики Tcl/Tk, пользователи оказываются способными к созданию новых графических интерфейсов уже после нескольких часов знакомства с продуктом. Другой особенностью языка Tcl, способствующей быстрой разработке оконных приложений, является то, что язык является интерпретируемым. Можно опробовать новую идею интерфейса, выражающуюся в сотнях или тысячах строк кода на языке Tcl, без потребности вызова новых программных средств, путем простого нажатия на клавишу мыши (не наблюдая существенных задержек при использовании современных рабочих станций).


Третьим преимуществом языка Tcl является то, что его можно применять в качестве языка "склейки" приложений. Например, любое основанное на Tcl и использующее Tk оконное приложение может направить свой скрипт любому другому аналогично ориентированному приложению. С использованием Tcl/Tk можно создавать приложения, работающие в стиле мультимедиа, и опять же они смогут обмениваться скриптами, поскольку пользуются общим интерпретатором командного языка Tcl и общей внешней библиотекой Tk.

Наконец, четвертым удобством интегрированного пакета Tcl/Tk является удобство пользователей. Для написания нового приложения в среде Tcl/Tk достаточно выучить несколько совершенно необходимых команд, и этого окажется достаточно. Другими словами оказывается возможным инкрементальный (пошаговый) стиль погружения в предмет. Такая возможность всегда радует сердце и греет душу.

Впрочем, заметим, что далеко не все программисты разделяют выраженное выше глубоко радостное отношение разработчиков Tcl/Tk к своему продукту.


Клиентская и серверная части


Как видно из материала предыдущего пункта, клиентская и серверная части оконной системы X, хотя в целом соответствуют идеологии архитектуры "клиент-сервер", обладают тем своеобразием, что серверная часть системы находится вблизи пользователя (т.е. основного клиента вычислительной сети), а клиентская часть системы базируется на мощных серверах сети. Конечно, система X обладает достаточной гибкостью, чтобы допустить расположение серверной и клиентской частей системы в одном компьютере, в разных компьютерах одной локальной сети и удаленных компьютерах, входящих в состав территориально распределенной сети. В зависимости от конфигурации системы X-сервер может обслуживать один или несколько графических экранов, клавиатуру и мышь, реально представляя собой процесс, группу процессов или выделенное компьютерное устройство (X-терминал).

Для обеспечения требуемой гибкости, взаимодействия клиентской и пользовательской частей системы X по мере возможностей не должны были зависеть от используемых сетевой среды передачи данных и сетевых протоколов. Конечно, полная независимость - это теоретически недостижимая цель (всегда и везде), но что касается системы X, то она действительно умеет работать в большинстве распространенных сетевых сред (в том числе, естественно, в стандартных для ОС UNIX сетях, основанных на семействе протоколов TCP/IP).

Основой взаимодействия между клиентом и сервером оконной системы X является так называемый X-протокол, представляющий собой точную спецификацию допустимых запросов от клиента к серверу и допустимых ответов сервера к клиенту. Как указывается в документации оконной системы X, Х-протокол обладает следующими особо привлекательными качествами:

При использовании этого протокола обработка взаимодействий клиента и сервера ведется единообразно, независимо от того, основана она на внутренних механизмах IPC или на реальных сетевых обменах; это позволяет добиться прозрачности сетевой среды как с точки зрения конечного пользователя, так и с точки зрения разработчика прикладных программ.


За счет наличия строгой и не зависящей от окружения спецификации X-протокол может быть реализован на различных языках в различных операционных средах.

X-протокол может быть реализован на основе любого надежно поддерживаемого потока байтов (обеспечиваемого внутренними механизмами IPC или внешними сетевыми механизмами); многие из пригодных механизмов являются стандартными и реализованы в большинстве архитектур.

Для большинства (хотя и не для всех) приложений X-протокол не порождает существенных задержек при работе с графическими терминалами. Обычно задержки вызываются скорее временными потребностями самих терминалов, а не расходами на протокольные взаимодействия клиента и сервера.

Одним из клиентов оконной системы обычно является так называемый "оконный менеджер" (window manager). Это специально выделенный клиент оконной системы, обладающий полномочиями на управление расположением окон на экране терминала. Некоторые из возможностей X-протокола (связанные, например, с перемещением окон) доступны только клиентам с полномочиями оконного менеджера. Во всем остальном оконный менеджер является обычным клиентом.


Командные языки и командные интерпретаторы


Как и в большинстве интерактивных систем, традиционный интерфейс с пользователем ОС UNIX основан на использовании командных языков. Выражаясь несколько тавтологично, можно сказать, что командный язык - это язык, на котором пользователь взаимодействует с системой в интерактивном режиме. Такой язык называется командным, поскольку каждую строку, вводимую с терминала и отправляемую системе, можно рассматривать как команду пользователя по отношению к системе. Одним из достижений ОС UNIX является то, что командные языки этой операционной системы являются хорошо определенными (не очень хороший русский термин, соответствующий совершенно однозначному английскому термину well-defined) и содержат много средств, приближающих их к языкам программирования.

Если рассматривать категорию командных языков с точки зрения общего направления языков взаимодействия человека с компьютером, то они, естественно, относятся к семейству интерпретируемых языков. Коротко охарактеризуем разницу между компилируемыми и интерпретируемыми компьютерными языками. Язык называется компилируемым, если требует, чтобы любая законченная конструкция языка была настолько замкнутой, чтобы обеспечивала возможность изолированной обработки без потребности привлечения дополнительных языковых конструкций. В противном случае понимание языковой конструкции не гарантируется. Житейским примером компилируемого языка является литературный русский язык. Ни один литературный редактор не примет от вас незаконченное сочинение, в котором имеются ссылки на еще не написанные части. Процесс компиляции (литературного редактирования в нашем примере) требует замкнутости языковых конструкций.

Основным преимуществом интерпретируемых языков является то, что в случае их использования программа пишется "инкрементально" (в пошаговом режиме), т.е. человек принимает решение о своем следующем шаге в зависимости от реакции системы на предыдущий шаг. В принципе, предпочтение компилируемых или интерпретируемых языков является предметом личного вкуса конкретного индивидуума (нам известны крупные авторитеты в области программирования - например, Д.Б. Подшивалов,- которые абсолютно уверены, что любая хорошая программа должна быть сначала написана на бумаге и отлажена за столом).



Команды


Любой командный язык семейства shell фактически состоит из трех частей: служебных конструкций, позволяющих манипулировать с текстовыми строками и строить сложные команды на основе простых команд; встроенных команд, выполняемых непосредственно интерпретатором командного языка; команд, представляемых отдельными выполняемыми файлами (более подробно и точно командные языки рассматриваются в пятой части курса).

В свою очередь, набор команд последнего вида включает стандартные команды (системные утилиты, такие как vi, cc и т.д.) и команды, созданные пользователями системы. Для того, чтобы выполняемый файл, разработанный пользователем ОС UNIX, можно было запускать как команду shell, достаточно определить в одном из исходных файлов функцию с именем main (имя main должно быть глобальным, т.е. перед ним не должно указываться ключевое слово static). Если употребить в качестве имени команды имя такого выполняемого файла, командный интерпретатор создаст новый процесс (см. следующий подраздел) и запустит в нем указанную выполняемую программу начиная с вызова функции main.

Тело функции main, вообще говоря, может быть произвольным (для интерпретатора существенно только наличие входной точки в программу с именем main), но для того, чтобы создать команду, которой можно задавать параметры, нужно придерживаться некоторых стандартных правил. В этом случае каждая функция main должна определяться с двумя параметрами - argc и argv. После вызова команды параметру argc будет соответствовать число символьных строк, указанных в качестве аргументов вызова команды, а argv - массив указателей на переменные, содержащие эти строки. При этом имя самой команды составляет первую строку аргументов (т.е. после вызова значение argc всегда больше или равно 1). Код функции main должен проанализировать допустимость заданного значения argc и соответствующим образом обработать заданные текстовые строки.

Например, следующий текст на языке Си может быть использован для создании команды, которая выводит на экран текстовую строку, заданную в качестве ее аргумента:

#include <stdio.h>

main (argc, argv)

int argc;

char *argv[];

{

if (argc != 2)

{ printf("usage: %s your-text\n", argv[0]);

exit;

}

printf("%s\n", argv[1]);

}



Команды и утилиты


Что действительно существенно при интерактивной работе в среде ОС UNIX, это знание и умение пользоваться разнообразными утилитами или внешними командами языка shell. Многие из этих утилит являются не менее сложными программами, чем сам командный интерпретатор (и между прочим, командный интерпретатор языка shell сам является одной из утилит, которую можно вызвать из командной строки). В этом разделе мы коротко обсудим, как устроены внешние команды shell и что нужно сделать, чтобы создать новую внешнюю команду.



Korn-shell


Если C-shell является синтаксической вариацией командного языка семейства shell по направлению к языку программирования Си, то Korn-shell - это непосредственный последователь Bourne-shell.

Если не углубляться в синтаксические различия, то Korn-shell обеспечивает те же возможности, что и C-shell, включая использование протокола и псевдонимов.

Реально, если не стремиться использовать командный язык как язык программирования (это возможно, но по мнению автора, неоправданно), то можно пользоваться любым вариантом командного языка, не ощущая их различий.



Linux университета Хельсинки


LINUX - это оригинальная реализация ОС UNIX для Intel-платформ, выполненная молодым сотрудником университета Хельсинки Линусом Торвальдом.

Ядро системы написано в традиционной технологии (т.е. без использования микроядра). Однако по отзывам любителей ядро LINUX отличается высоким качеством кода и хорошей модульностью. Кроме того, утверждается, что при аккуратном программировании прикладные программы, созданные в среде LINUX, без особых проблем переносятся в среду коммерческих систем, базирующихся на System V.

LINUX распространяется свободно, является очень экономичной ОС (т.е. не требует слишком много ресурсов компьютера) и весьма популярен среди молодежи. Практически каждую неделю появляется новый драйвер, работающий в LINUX. Этой ОС посвящена одна из самых активных телеконференций в Internet. Уже издается несколько регулярных журналов, связанных исключительно с тематикой LINUX.



Микроядро Chorus компании Chorus Systems


Микроядро Chorus во многих отношениях походит на реализации Mach, выполненные IBM и OSF. Chorus включает поддержку распределенных процессоров, нескольких распределенных серверов операционной системы (во многом похожую на комбинацию Mach-OSF/1), управления памятью и обработки прерываний. Поддерживается также прозрачное взаимодействие с другими экземплярами микроядра Chorus, что делает Chorus хорошей основой для сильно распределенных систем.

Драйверы устройств не включаются в ядро. Аналогично подходу IBM, драйверы получают доступ к аппаратуре через ядро. Это дает возможность компоненту более высокого уровня - менеджеру устройств, отслеживать работу драйверов, функционирующих в разных узлах распределенной системы.



Микроядро Mach университета Карнеги-Меллон


В разрабатывавшейся компанией IBM ОС Workplace (теперь она отказалась от завершения этой ОС) использовалось микроядро Mach 3.0, расширенное в кооперации с OSF средствами поддержки параллельной обработки и реального времени. Микроядро заведовало функциями взаимодействия процессов, управления виртуальной памятью, управления процессами и нитями (threads), управления процессорами (включая мультипроцессорные системы), а также управления вводом-выводом и обработки прерываний. Файловая система, планировщик процессов, сетевые службы и система безопасности вынесены из микроядра. В IBM эти компоненты называют PNS (Personally Neutral Services), поскольку они используются во всех эмуляторах операционных систем.

Управление процессами и нитями в Workplace являлись функцией ядра. Но на самом деле в ядре был расположен только диспетчер процессов. Планировщик, ведающий приоритетами, определяющий порядок выполнения и заказывающий диспетчеризацию процессов и нитей, функционировал вне ядра.

Управление памятью также распределялось между микроядром и PNS. Ядро управляло аппаратурой страничной памяти. Подсистема управления страничной памятью, работающая вне ядра, определяла стратегию замещения страниц. Подобно планировщику эта подсистема являлась заменяемым компонентом.

На уровне PNS могут располагаться не только такие внутренние подсистемы, как файловая система и драйверы устройств, но и сетевые службы и даже системы управления базами данных. По мнению IBM, размещение подобных служб в непосредственной близости от микроядра позволит повысить их эффективность за счет сокращения числа вызовов функций и возможности использовать собственные драйверы устройств.

OSF ориентируется на массивно параллельные аппаратные системы. Активно изучаются вопросы изменения поведения операционной системы при возрастании числа процессоров. В такой системе микроядро Mach будет работать на всех процессорах, а сервер OSF/1 потребуется только на некоторых из них.

Как планирует OSF, в будущих версиях OSF/1 на основе Mach будет поддерживаться возможность размещения сервера OSF/1 в пространстве ядра или в пользовательском пространстве в соответствии с выбором системного администратора при конфигурировании системы. Выполнение сервера OSF/1 в пространстве ядра позволит повысить производительность, так как вместо передачи сообщений будут использоваться вызовы процедур, и сервер всегда будет целиком располагаться в памяти. При выполнении сервера в пользовательском пространстве будет возможен его свопинг, что потенциально увеличит память, доступную для программ пользователя. Заметим, что примерно такой же подход используется USL в версиях UNIX, основанных на микроядре Chorus. Системные функции будут разработаны и отлажены в пользовательском пространстве, а потом можно будет перенести в пространство ядра для достижения наилучшей производительности.



MiX компании Chorus Systems


Существует несколько реализаций микроядра Chorus. Chorus/MiX, версия компании Chorus операционной системы с интерфейсами UNIX, включает отдельные версии, совместимые с SVR3.2 и SVR4. USL собирается объявить Chorus/MiX V.4 микроядерной реализацией SVR4. USL и Chorus Systems планируют совместную работу по разработке Chorus/MiX V.4 в качестве будущего направления UNIX. Специально для использования на персональных компьютерах компания Chorus поддерживает реализацию Chorus/MiX, совместимую с SCO.



Мобильное программирование в среде ОС UNIX


Одним из основных преимуществ семейства операционных систем типа UNIX и возникшего на их основе подхода к стандартизации интерфейсов операционных систем (важная часть общего подхода открытых систем) является то, что они обеспечивают единую операционную среду на компьютерах с разной архитектурой. Конечно, в начальном периоде истории ОС UNIX эта единообразность операционной среды являлась следствием мобильности единого текстового варианта системы. Когда начали появляться варианты ОС UNIX с разными исходными текстами, единообразность операционной среды стала нарушаться. И разработчикам ОС, и поставщикам аппаратных и программных средств было понятно, что складывающаяся ситуация наносит урон и производителям, и пользователям. Вместе с тем, уже нельзя было надеяться, что когда-нибудь удастся вернуться к единой реализации ОС UNIX. Выход был найден на пути стандартизации интерфейсов и семантики программных средств разного уровня, которые должна поддерживать любая операционная система, претендующая на операционную совместимость с "ОС UNIX". (Некоторые детали современного состояния процесса стандартизации излагаются в разделе 7.5.)

Конечно и до сих пор в разных реализациях ОС UNIX операционные среды несколько отличаются. Иногда (и довольно часто) бывает так, что утрачивается операционная совместимость даже при выпуске новой версии ОС. Но тем не менее, можно говорить о некотором общем подмножестве операционных средств, которые полностью стандартизованы и должны поддерживаться любым современным вариантом ОС UNIX. Этого подмножества оказывается достаточно для создания широкого класса мобильных приложений (хотя, конечно, некоторые особо сложные приложения, в особенности, связанные с реальным временем, пока удается делать мобильными только при использовании единой реализации ОС UNIX). В этой части курса мы рассмотрим основные приемы прикладного мобильного программирования в среде ОС UNIX, неявно подразумевая использование языка Си.

Замечание: Язык Си был и остается основным инструментом мобильного программирования в среде UNIX-систем. Многие считают (и мы с этим согласны), что более удобно, эффективно и надежно использовать языки объектно-ориентированного программирования, среди которых в настоящее время наиболее распространен язык Си++. Однако поддержка мобильного программирования на Си++ пока гораздо слабее, чем в случае Си (если, конечно, не ограничиваться использованием подмножества Си языка Си++ - но какой в этом смысл?). Можно, правда, надеяться, что после принятия летом 1995 г. международного стандарта языка Си++, который включает стандарты наиболее важных библиотек классов, через некоторое время такая поддержка появится.



Мобильность на уровне исходных текстов


Материал, рассмотренный нами в предыдущем разделе, относится к вопросам мобильного программирования в связи с использованием функций операционной среды. Однако, если говорить о переносимости программ между компьютерами с разной архитектурой, имея в виду использование языка Си (не слишком высокого уровня), то нужно учитывать ряд требований, которым должна удовлетворять программа.



Монтируемые файловые системы


Файлы любой файловой системы становятся доступными только после "монтирования" этой файловой системы. Файлы "не смонтированной" файловой системы не являются видимыми операционной системой.

Для монтирования файловой системы используется системный вызов mount. Монтирование файловой системы означает следующее. В имеющемся к моменту монтирования дереве каталогов и файлов должен иметься листовой узел - пустой каталог (в терминологии UNIX такой каталог, используемый для монтирования файловой системы, называется directory mount point - точка монтирования). В любой файловой системе имеется корневой каталог. Во время выполнения системного вызова mount корневой каталог монтируемой файловой системы совмещается с каталогом - точкой монтирования, в результате чего образуется новая иерархия с полными именами каталогов и файлов.

Смонтированная файловая система впоследствии может быть отсоединена от общей иерархии с использованием системного вызова umount. Для успешного выполнения этого системного вызова требуется, чтобы отсоединяемая файловая система к этому моменту не находилась в использовании (т.е. ни один файл из этой файловой системы не был открыт). Корневая файловая система всегда является смонтированной, и к ней не применим системный вызов umount.

Как мы отмечали выше, отдельная файловая система обычно располагается на логическом диске, т.е. на разделе физического диска. Для инициализации файловой системы не поддерживаются какие-либо специальные системные вызовы. Новая файловая система образуется на отформатированном диске с использованием утилиты (команды) mkfs. Вновь созданная файловая система инициализируется в состояние, соответствующее наличию всего лишь одного пустого корневого каталога. Команда mkfs выполняет инициализацию путем прямой записи соответствующих данных на диск.



Обеспечение независимости от особенностей версии ОС UNIX


Специфичным видом мобильности приложений на уровне исходных текстов является возможность их выполнения с несколькими версиями одного и того же варианта ОС UNIX, включая ранние версии, далекие от современных стандартов. Достаточно часто поздние версии не обеспечивают полной совместимости с более ранними версиями, поскольку такая совместимость не дала бы возможности добиться в поздних версиях соответствия стандартам.

По-видимому, единственным на текущий момент практическим приемом для достижения такого рода мобильности приложений на уровне исходных текстов является развитое применение операторов условной компиляции в текстах программ (условной компиляции на уровне файлов включения часто оказывается недостаточно, поскольку в зависимости от версии системы в прикладной системе приходится использовать разные комбинации системных вызовов и других библиотечных функций). Обычно в основных файлах включения поддерживаются символические константы, значения которых позволяют судить об особенностях используемой версии ОС. Опираясь на значения этих констант, можно добиться того, что правильно написанная прикладная программа будет правильно компилироваться (и собираться) в среде конкретной версии операционной системы. Наличие единого текста облегчает сопровождение прикладной программы и облегчает достижение его одинаковой функциональности при работе с разными версиями системы (хотя такие тексты, переполненные операторами условной компиляции, обычно очень трудно читаются; можно только рекомендовать по мере возможности локализовать куски программы, зависящие от версии ОС).



Общая характеристика командных языков


В этом пункте и далее в данном разделе мы будем более конкретно говорить о командных языках семейства shell. Основное назначение этих языков (их разновидностей существует достаточно много, но мы рассмотрим только три наиболее распространенные варианта - Bourne-shell, C-shell и Korn-shell) состоит в том, чтобы предоставить пользователям удобные средства взаимодействия с системой. Что это означает? Языки не даром называются командными. Они предназначены для того, чтобы дать пользователю возможность выполнять команды, предназначенные для исполнения некоторых действий операционной системы. Существует два вида команд.

Собственные команды shell (такие как cd, echo, exec и т.д.) выполняются непосредственно интерпретатором, т.е. их семантика встроена в соответствующий язык. Имена других команд на самом деле являются именами файлов, содержащих выполняемые программы. В случае вызова такой команды интерпретатор командного языка с использованием соответствующих системных вызовов запускает параллельный процесс, в котором выполняется нужная программа. Конечно, смысл действия подобных команд является достаточно условным, поскольку зависит от конкретного наполнения внешних файлов. Тем не менее, в описании каждого языка содержатся и характеристики "внешних команд" (например, find, grep, cc и т.д.) в расчете на то, что здравомыслящие пользователи (и их администраторы) не будут изменять содержимое соответствующих файлов.

Существенным компонентом командного языка являются средства, позволяющие разнообразными способами комбинировать простые команды, образуя на их основе составные команды. В семействе языков shell возможны следующие средства комбинирования. В одной командной строке (важный термин, означающий единицу информационного взаимодействия с командным интерпретатором) можно указать список команд, которые должны выполняться последовательно, или список команд, которые должны выполняться "параллельно" (т.е. независимо одна от другой).

Очень важной особенностью семейства языков shell являются возможности перенаправления ввода/вывода и организации конвейеров команд. Естественно, эти возможности опираются на базовые средства ОС UNIX (см. п. 2.1.8). Кратко напомним, в чем они состоят. Для каждого пользовательского процесса (а внешние команды shell выполняются в рамках отдельных пользовательских процессов) предопределены три выделенных дескриптора файлов: файла стандартного ввода (standard input), файла стандартного вывода (standard output) и файла стандартного вывода сообщений об ошибках (standard error). Хорошим стилем программирования в среде ОС UNIX является такой, при котором любая программа читает свои вводные данные из файла стандартного ввода, а выводит свои результаты и сообщения об ошибках в файлы стандартного вывода и стандартного вывода сообщений об ошибках соответственно. Поскольку любой порожденный процесс "наследует" все открытые файлы своего предка (см. п. 2.1.7), то при программировании команды рекомендуется не задумываться об источнике вводной информации программы, а также конкретном ресурсе, поддерживающим вывод основных сообщений и сообщений об ошибках. Нужно просто пользоваться стандартными файлами, за конкретное определение которых отвечает процесс-предок (заметим, что по умолчанию все три файла соответствуют вводу и выводу на тот терминал, с которого работает пользователь).


Что обеспечивает такая дисциплина работы? Прежде всего возможность создания программ, "нейтральных" по отношению к источнику своих вводных данных и назначению своих выводных данных. Собственно, на этом и основаны принципы перенаправления ввода/вывода и организации конвейера команд. Все очень просто. Если вы пишете в командной строке конструкцию

com1 par1, par2, ..., parn > file_name ,

то это означает, что для стандартного вывода команды com1 будет использоваться файл с именем file_name. Если вы пишете

file_name < com1 par1, par2, ..., parn ,

то команда com1 будет использовать файл с именем file_name в качестве источника своего стандартного ввода. Если же вы пишете

com1 par1, par2, ..., parn | com2 par1, par2, ..., parm ,

то в качестве стандартного ввода команды com2 будет использоваться стандартный вывод команды com1. (Конечно, при организации такого рода "конвейеров" используются программные каналы, см. п. 3.4.4.)

Конвейер представляет собой простое, но исключительно мощное средство языков семейства shell, поскольку позволяет во время работы динамически создавать "комбинированные" команды. Например, указание в одной командной строке последовательности связанных конвейером команд

ls -l | sort -r

приведет к тому, что подробное содержимое текущего каталога будет отсортировано по именам файлов в обратном порядке и выдано на экран терминала. Если бы не было возможности комбинирования команд, до для достижения такой возможности потребовалось бы внедрение в программу ls возможностей сортировки.

Последнее, что нам следует обсудить в этом пункте, это существо команд семейства языков shell. Различаются три вида команд. Первая разновидность состоит из команд, встроенных в командный интерпретатор, т.е. составляющих часть его программного кода. Эти команды предопределены в командном языке, и их невозможно изменить без переделки интерпретатора. Команды второго вида - это выполняемые программы ОС UNIX. Обычно они пишутся на языке Си по определенным правилам (см. п. 5.2.1). Такие команды включают стандартные утилиты ОС UNIX, состав которых может быть расширен любым пользователем (если, конечно, он еще способен программировать). Наконец, команды третьего вида (так называемые скрипты языка shell) пишутся на самом языке shell. Это то, что традиционно называлось командным файлом, поскольку на самом деле представляет собой отдельный файл, содержащий последовательность строк в синтаксисе командного языка.


Общая организация традиционного ядра ОС UNIX


Одно из основных достижений ОС UNIX состоит в том, что система обладает свойством высокой мобильности. Смысл этого качества состоит в том, что вся операционная система, включая ее ядро, сравнительно просто переносится на различные аппаратные платформы. Все части системы, не считая ядра, являются полностью машинно-независимыми. Эти компоненты аккуратно написаны на языке Си, и для их переноса на новую платформу (по крайней мере, в классе 32-разрядных компьютеров) требуется только перекомпиляция исходных текстов в коды целевого компьютера.

Конечно, наибольшие проблемы связаны с ядром системы, которое полностью скрывает специфику используемого компьютера, но само зависит от этой специфики. В результате продуманного разделения машинно-зависимых и машинно-независимых компонентов ядра (видимо, с точки зрения разработчиков операционных систем, в этом состоит наивысшее достижение разработчиков традиционного ядра ОС UNIX) удалось добиться того, что основная часть ядра не зависит от архитектурных особенностей целевой платформы, написана полностью на языке Си и для переноса на новую платформу нуждается только в перекомпиляции.

Однако сравнительно небольшая часть ядра является машинно-зависимой и написана на смеси языка Си и языка ассемблера целевого процессора. При переносе системы на новую платформу требуется переписывание этой части ядра с использованием языка ассемблера и учетом специфических черт целевой аппаратуры. Машинно-зависимые части ядра хорошо изолированы от основной машинно-независимой части, и при хорошем понимании назначения каждого машинно-зависимого компонента переписывание машинно-зависимой части является в основном технической задачей (хотя и требует высокой программистской квалификации).

Машинно-зависимая часть традиционного ядра ОС UNIX включает следующие компоненты:

раскрутка и инициализация системы на низком уровне (пока это зависит от особенностей аппаратуры);

первичная обработка внутренних и внешних прерываний;

управление памятью (в той части, которая относится к особенностям аппаратной поддержки виртуальной памяти);

переключение контекста процессов между режимами пользователя и ядра;

связанные с особенностями целевой платформы части драйверов устройств.