5.12.1 Системная функция pipе
5.12.1 Системная функция pipе
Синтаксис вызова функции создания канала:
pipe(fdptr);где fdptr - указатель на массив из двух целых переменных, в котором будут храниться два дескриптора файла для чтения из канала и для записи в канал. Поскольку ядро реализует каналы внутри файловой системы и поскольку канал не существует до того, как его будут использовать, ядро должно при создании канала назначить ему индекс. Оно также назначает для канала пару пользовательских дескрипторов и соответствующие им записи в таблице файлов: один из дескрипторов для чтения из канала, а другой для записи в канал. Поскольку ядро пользуется таблицей файлов, интерфейс для вызова функций read, write и др. согласуется с интерфейсом для обычных файлов. В результате процессам нет надобности знать, ведут ли они чтение или запись в обычный файл или в канал.
5.12.2 Открытие поименованного канала
5.12.2 Открытие поименованного канала
Поименованный канал - это файл, имеющий почти такую же семантику, как и непоименованный канал, за исключением того, что этому файлу соответствует запись в каталоге и обращение к нему производится по имени. Процессы открывают поименованные каналы так же, как и обычные файлы, и, следовательно, с помощью поименованных каналов могут взаимодействовать между собой даже процессы, не имеющие друг к другу близкого отношения. Поименованные каналы постоянно присутствуют в иерархии файловой системы (из которой они удаляются с помощью системной функции unlink), а непоименованные каналы являются временными: когда все процессы заканчивают работу с каналом, ядро отбирает назад его индекс.
Алгоритм открытия поименованного канала идентичен алгоритму открытия обычного файла. Однако, перед выходом из функции ядро увеличивает значения тех счетчиков в индексе, которые показывают количество процессов, открывших поименованный канал для чтения или записи. Процесс, открывающий поименованный канал для чтения, приостановит свое выполнение до тех пор, пока другой процесс не откроет поименованный канал для записи, и наоборот. Не имеет смысла открывать канал для чтения, если процесс не надеется получить данные; то же самое касается записи. В зависимости от того, открывает ли процесс поименованный канал для записи или для чтения, ядро возобновляет выполнение тех процессов, которые были приостановлены в ожидании процесса, записывающего в поименованный канал или считывающего данные из канала (соответственно).
Если процесс открывает поименованный канал для чтения, причем процесс, записывающий в канал, существует, открытие завершается. Или если процесс открывает поименованный файл с параметром "no delay", функция open возвращает управление немедленно, даже когда нет ни одного записывающего процесса. Во всех остальных случаях процесс приостанавливается до тех пор, пока записывающий процесс не откроет канал. Аналогичные правила действуют для процесса, открывающего канал для записи.
5.12.3 Чтение из каналов и запись в каналы
5.12.3 Чтение из каналов и запись в каналы
Канал следует рассматривать под таким углом зрения, что процессы ведут запись на одном конце канала, а считывают данные на другом конце. Как уже говорилось выше, процессы обращаются к данным в канале в порядке их поступления в канал; это означает, что очередность, в которой данные записываются в канал, совпадает с очередностью их выборки из канала. Совпадение количества процессов, считывающих данные из канала, с количеством процессов, ведущих запись в канал, совсем не обязательно; если одно число отличается от другого более, чем на 1, процессы должны координировать свои действия по использованию канала с помощью других механизмов. Ядро обращается к данным в канале точно так же, как и к данным в обычном файле: оно сохраняет данные на устройстве канала и назначает каналу столько блоков, сколько нужно, во время выполнения функции write. Различие в выделении памяти для канала и для обычного файла состоит в том, что канал использует в индексе только блоки прямой адресации в целях повышения эффективности работы, хотя это и накладывает определенные ограничения на объем данных, одновременно помещающихся в канале. Ядро работает с блоками прямой адресации индекса как с циклической очередью, поддерживая в своей структуре указатели чтения и записи для обеспечения очередности обслуживания "первым пришел - первым вышел" (Рисунок 5.17).
Рассмотрим четыре примера ввода-вывода в канал: запись в канал, в котором есть место для записи данных; чтение из канала, в котором достаточно данных для удовлетворения запроса на чтение; чтение из канала, в котором данных недостаточно; и запись в канал, где нет места для записи.
5.12.4 Закрытие каналов
5.12.4 Закрытие каналов
При закрытии канала процесс выполняет ту же самую процедуру, что и при закрытии обычного файла, за исключением того, что ядро, прежде чем освободить индекс канала, выполняет специальную обработку. Оно уменьшает количество процессов чтения из канала или записи в канал в зависимости от типа файлового дескриптора. Если значение счетчика числа записывающих в канал процессов становится равным 0 и имеются процессы, приостановленные в ожидании чтения данных из канала, ядро возобновляет выполнение последних и они завершают свои операции чтения без возврата каких-либо данных. Если становится равным 0 значение счетчика числа считывающих из канала процессов и имеются процессы, приостановленные в ожидании возможности записи данных в канал, ядро возобновляет выполнение последних и посылает им сигнал (глава 7) об ошибке. В обоих случаях не имеет смысла продолжать держать процессы приостановленными, если нет надежды на то, что состояние канала когда-нибудь изменится. Например, если процесс ожидает возможности производить чтение из непоименованного канала и в системе больше нет процессов, записывающих в этот канал, значит, записывающий процесс никогда не появится. Несмотря на то, что если канал поименованный, в принципе возможно появление нового считывающего или записывающего процесса, ядро трактует эту ситуацию точно так же, как и для непоименованных каналов. Если к каналу не обращается ни один записывающий или считывающий процесс, ядро освобождает все информационные блоки канала и переустанавливает индекс таким образом, чтобы он указывал на то, что канал пуст. Когда ядро освобождает индекс обычного канала, оно освобождает для переназначения и дисковую копию этого индекса.
5.12.5 Примеры
5.12.5 Примеры
Программа на Рисунке 5.18 иллюстрирует искусственное использование каналов. Процесс создает канал и входит в бесконечный цикл, записывая в канал строку символов "hello" и считывая ее из канала. Ядру не нужно ни знать о том, что процесс, ведущий запись в канал, является и процессом, считывающим из канала, ни проявлять по этому поводу какое-либо беспокойство.
5.12 КАНАЛЫ
5.12 КАНАЛЫ
Каналы позволяют передавать данные между процессами в порядке поступления ("первым пришел - первым вышел"), а также синхронизировать выполнение процессов. Их использование дает процессам возможность взаимодействовать между собой, пусть даже не известно, какие процессы находятся на другом конце канала. Традиционная реализация каналов использует файловую систему для хранения данных. Различают два вида каналов: поименованные каналы и, за отсутствием лучшего термина, непоименованные каналы, которые идентичны между собой во всем, кроме способа первоначального обращения к ним процессов. Для поименованных каналов процессы используют системную функцию open, а системную функцию pipe - для создания непоименованного канала. Впоследствии, при работе с каналами процессы пользуются обычными системными функциями для файлов, такими как read, write и close. Только связанные между собой процессы, являющиеся потомками того процесса, который вызвал функцию pipe, могут разделять доступ к непоименованным каналам. Например (см. Рисунок 5.15), если процесс B создает канал и порождает процессы D и E, эти три процесса разделяют между собой доступ к каналу, в отличие от процессов A и C. Однако, все процессы могут обращаться к поименованному каналу независимо от взаимоотношений между ними, при условии наличия обычных прав доступа к файлу. Поскольку непоименованные каналы встречаются чаще, они будут рассмотрены первыми.
5.13 DUР
5.13 DUР
Системная функция dup копирует дескриптор файла в первое свободное место в таблице пользовательских дескрипторов файла, возвращая новый дескриптор пользователю. Она действует для всех типов файла. Синтаксис вызова функции:
newfd = dup(fd);где fd - дескриптор файла, копируемый функцией, а newfd - новый дескриптор, ссылающийся на файл. Поскольку функция dup дублирует дескриптор файла, она увеличивает значение счетчика в соответствующей записи таблицы файлов - записи, на которую указывают связанные с ней точки входа в таблице файловых дескрипторов, которых теперь стало на одну больше. Например, обзор структур данных, изображенных на Рисунке 5.20, показывает, что процесс вызывает следующую последовательность функций: он открывает (open) файл с именем "/etc/passwd" (файловый дескриптор 3), затем открывает файл с именем "local" (файловый дескриптор 4), снова файл с именем "/etc/passwd" (файловый дескриптор 5) и, наконец, дублирует (dup) файловый дескриптор 3, возвращая дескриптор 6.
5.14.1 Пересечение точек монтирования
5.14.1 Пересечение точек монтирования в маршрутах поиска имен файлов
Давайте повторно рассмотрим поведение алгоритмов namei и iget в случаях, когда маршрут поиска файлов проходит через точку монтирования. Точку монтирования можно пересечь двумя способами: из файловой системы, где производится монтирование, в файловую систему, которая монтируется (в направлении от глобального корня к листу), и в обратном направлении. Эти способы иллюстрирует следующая последовательность команд shell'а.
mount /dev/dsk1 /usr cd /usr/src/uts cd ../../..По команде mount после выполнения некоторых логических проверок запускается системная функция mount, которая монтирует файловую систему в дисковом разделе с именем "/dev/dsk1" под управлением каталога "/usr". Первая из команд cd (сменить каталог) побуждает командный процессор shell вызвать системную функцию chdir, выполняя которую, ядро анализирует имя пути поиска, пересекающего точку монтирования в "/usr". Вторая из команд cd приводит к тому, что ядро анализирует имя пути поиска и пересекает точку монтирования в третьей компоненте ".." имени.
5.14.2 Демонтирование файловой системы
5.14.2 Демонтирование файловой системы
Синтаксис вызова системной функции umount:
umount(special filename);где special filename указывает демонтируемую файловую систему. При демонтировании файловой системы (Рисунок 5.27) ядро обращается к индексу демонтируемого устройства, восстанавливает номер устройства для специального файла, освобождает индекс (алгоритм iput) и находит в таблице монтирования запись с номером устройства, равным номеру устройства для специального файла. Прежде чем ядро действительно демонтирует файловую систему, оно должно удостовериться в том, что в системе не осталось используемых файлов, для этого ядро просматривает таблицу индексов в поисках всех файлов, чей номер устройства совпадает с номером демонтируемой системы. Активным файлам соответствует положительное значение счетчика ссылок и в их число входят текущий каталог процесса, файлы с разделяемым текстом, которые исполняются в текущий момент (глава 7), и открытые когда-то файлы, которые потом не были закрыты. Если какие-нибудь файлы из файловой системы активны, функция umount завершается неудачно: если бы она прошла успешно, активные файлы сделались бы недоступными.
Буферный пул все еще содержит блоки с "отложенной записью", не переписанные на диск, поэтому ядро "вымывает" их из буферного пула. Ядро удаляет записи с разделяемым текстом, которые находятся в таблице областей, но не являются действующими (подробности в главе 7), записывает на диск все недавно скорректированные суперблоки и корректирует дисковые копии всех индексов, которые требуют этого. Казалось, было бы достаточно откорректировать дисковые блоки, суперблок и индексы только для демонтируемой файловой системы, однако в целях сохранения преемственности изменений ядро выполняет аналогичные действия для всей системы в целом. Затем ядро освобождает корневой индекс монтированной файловой системы, удерживаемый с момента первого обращения к нему во время выполнения функции mount, и запускает из драйвера процедуру закрытия устройства, содержащего файловую систему. Впоследствии ядро просматривает буферы в буферном кеше и делает недействительными те из них, в которых находятся блоки демонтируемой файловой системы; в хранении информации из этих блоков в кеше больше нет необходимости. Делая буферы недействительными, ядро вставляет их в начало списка свободных буферов, в то время как блоки с актуальной информацией остаются в буферном кеше. Ядро сбрасывает в индексе системы, где производилось монтирование, флаг "точки монтирования", установленный функцией mount, и освобождает индекс. Пометив запись в таблице монтирования свободной для общего использования, функция umount завершает работу.
5.14 МОНТИРОВАНИЕ И ДЕМОНТИРОВАНИЕ ФАЙЛОВЫХ СИСТЕМ
5.14 МОНТИРОВАНИЕ И ДЕМОНТИРОВАНИЕ ФАЙЛОВЫХ СИСТЕМ
Физический диск состоит из нескольких логических разделов, на которые он разбит дисковым драйвером, причем каждому разделу соответствует файл устройства, имеющий определенное имя. Процессы обращаются к данным раздела, открывая соответствующий файл устройства и затем ведя запись и чтение из этого "файла", представляя его себе в виде последовательности дисковых блоков. Это взаимодействие во всех деталях рассматривается в главе 10. Раздел диска может содержать логическую файловую систему, состоящую из блока начальной загрузки, суперблока, списка индексов и информационных блоков (см. главу 2). Системная функция mount (монтировать) связывает файловую систему из указанного раздела на диске с существующей иерархией файловых систем, а функция umount (демонтировать) выключает файловую систему из иерархии. Функция mount, таким образом, дает пользователям возможность обращаться к данным в дисковом разделе как к файловой системе, а не как к последовательности дисковых блоков.
Синтаксис вызова функции mount:
mount(special pathname,directory pathname,options);где special pathname - имя специального файла устройства, соответствующего дисковому разделу с монтируемой файловой системой, directory pathname - каталог в существующей иерархии, где будет монтироваться файловая система (другими словами, точка или место монтирования), а options указывает, следует ли монтировать файловую систему "только для чтения" (при этом не будут выполняться такие функции, как write и creat, которые производят запись в файловую систему). Например, если процесс вызывает функцию mount следующим образом:
mount("/dev/dsk1","/usr",0);ядро присоединяет файловую систему, находящуюся в дисковом разделе с именем "/dev/dsk1", к каталогу "/usr" в существующем дереве файловых систем (см. Рисунок 5.22). Файл "/dev/dsk1" является блочным специальным файлом, т.е. он носит имя устройства блочного типа, обычно имя раздела на диске. Ядро предполагает, что раздел на диске с указанным именем содержит файловую систему с суперблоком, списком индексов и корневым индексом. После выполнения функции mount к корню смонтированной файловой системы можно обращаться по имени "/usr". Процессы могут обращаться к файлам в монтированной файловой системе и игнорировать тот факт, что система может отсоединяться. Только системная функция link контролирует файловую систему, так как в версии V не разрешаются связи между файлами, принадлежащими разным файловым системам (см. раздел 5.15).
5.15 LINК
5.15 LINК
Системная функция link связывает файл с новым именем в структуре каталогов файловой системы, создавая для существующего индекса новую запись в каталоге. Синтаксис вызова функции link:
link(source file name, target file name);где source file name - существующее имя файла, а target file name - новое (дополнительное) имя, присваиваемое файлу после выполнения функции link. Файловая система хранит имя пути поиска для каждой связи, имеющейся у файла, и процессы могут обращаться к файлу по любому из этих имен. Ядро не знает, какое из имен файла является его подлинным именем, поэтому имя файла специально не обрабатывается. Например, после выполнения набора функций:
link("/usr/src/uts/sys","/usr/include/sys"); link("/usr/include/realfile.h","/usr/src/uts/sys/testfile.h");на один и тот же файл будут указывать три имени пути поиска: "/usr/src/uts/sys/testfile.h", "/usr/include/sys/testfile.h" и "/usr/include/realfile" (см. Рисунок 5.28).
Ядро позволяет суперпользователю (и только ему) связывать каталоги, упрощая написание программ, требующих пересечения дерева файловой системы. Если бы это было разрешено произвольному пользователю, программам, пересекающим иерархическую структуру файлов, пришлось бы заботиться о том, чтобы не попасть в бесконечный цикл в том случае, если пользователь связал каталог с вершиной, стоящей ниже в иерархии. Предполагается, что суперпользователи более осторожны в указании таких связей. Возможность связывать между собой каталоги должна была поддерживаться в ранних версиях системы, так как эта возможность требуется для реализации команды mkdir, которая создает новый каталог. Включение функции mkdir устраняет необходимость в связывании каталогов.
5.16.1 Целостность файловой системы
5.16.1 Целостность файловой системы
Ядро посылает свои записи на диск для того, чтобы свести к минимуму опасность искажения файловой системы в случае системного сбоя. Например, когда ядро удаляет имя файла из родительского каталога, оно синхронно переписывает каталог на диск - перед тем, как уничтожить содержимое файла и освободить его индекс. Если система дала сбой до того, как произошло удаление содержимого файла, ущерб файловой системе будет нанесен минимальный: один из индексов будет иметь число связей, на 1 превышающее число записей в каталоге, которые ссылаются на этот индекс, но все остальные имена путей поиска файла останутся допустимыми. Если запись на диск не была сделана синхронно, точка входа в каталог на диске после системного сбоя может указывать на свободный (или переназначенный) индекс. Таким образом, число записей в каталоге на диске, которые ссылаются на индекс, превысило бы значение счетчика ссылок в индексе. В частности, если имя файла было именем последней связи файла, это имя указывало бы на не назначенный индекс. Не вызывает сомнения, что в первом случае ущерб, наносимый системе, менее серьезен и легко устраним (см. раздел 5.18).
Предположим, например, что у файла есть две связи с именами "a" и "b", одна из которых - "a" - разрывается процессом с помощью функции unlink. Если ядро записывает на диске результаты всех своих действий, то оно, очищая точку входа в каталог для файла "a", делает то же самое на диске. Если система дала сбой после завершения записи результатов на диск, число связей у файла "b" будет равно 2, но файл "a" уже не будет существовать, поскольку прежняя запись о нем была очищена перед сбоем системы. Файл "b", таким образом, будет иметь лишнюю связь, но после перезагрузки число связей переустановится и система будет работать надлежащим образом.
Теперь предположим, что ядро записывало на диск результаты своих действий в обратном порядке и система дала сбой: то есть, ядро уменьшило значение счетчика связей для файла "b", сделав его равным 1, записало индекс на диск и дало сбой перед тем, как очистить в каталоге точку входа для файла "a". После перезагрузки системы записи о файлах "a" и "b" в соответствующих каталогах будут существовать, но счетчик связей у того файла, на который они указывают, будет иметь значение 1. Если затем процесс запустит функцию unlink для файла "a", значение счетчика связей станет равным 0, несмотря на то, что файл "b" ссылается на тот же индекс. Если позднее ядро переназначит индекс в результате выполнения функции creat, счетчик связей для нового файла будет иметь значение, равное 1, но на файл будут ссылаться два имени пути поиска. Система не может выправить ситуацию, не прибегая к помощи программ сопровождения (fsck, описанной в разделе 5.18), обращающихся к файловой системе через блочный или строковый интерфейс.
Для того, чтобы свести к минимуму опасность искажения файловой системы в случае системного сбоя, ядро освобождает индексы и дисковые блоки также в особом порядке. При удалении содержимого файла и очистке его индекса можно сначала освободить блоки, содержащие данные файла, а можно освободить индекс и заново переписать его. Результат в обоих случаях, как правило, одинаковый, однако, если где-то в середине произойдет системный сбой, они будут различаться. Предположим, что ядро сначала освободило дисковые блоки, принадлежавшие файлу, и дало сбой. После перезагрузки системы индекс все еще содержит ссылки на дисковые блоки, занимаемые файлом прежде и ныне не хранящие относящуюся к файлу информацию. Ядру файл показался бы вполне удовлетворительным, но пользователь при обращении к файлу заметит искажение данных. Эти дисковые блоки к тому же могут быть переназначены другим файлам. Чтобы очистить файловую систему программой fsck, потребовались бы большие усилия. Однако, если система сначала переписала индекс на диск, а потом дала сбой, пользователь не заметит каких-либо искажений в файловой системе после перезагрузки. Информационные блоки, ранее принадлежавшие файлу, станут недоступны для системы, но каких-нибудь явных изменений при этом пользователи не увидят. Программе fsck так же было бы проще забрать назад освободившиеся после удаления связи дисковые блоки, нежели производить очистку, необходимую в первом из рассматриваемых случаев.
5.16.2 Поводы для конкуренции
5.16.2 Поводы для конкуренции
Поводов для конкуренции при выполнении системной функции unlink очень много, особенно при удалении имен каталогов. Команда rmdir удаляет каталог, убедившись предварительно в том, что в каталоге отсутствуют файлы (она считывает каталог и проверяет значения индексов во всех записях каталога на равенство нулю). Но так как команда rmdir запускается на пользовательском уровне, действия по проверке содержимого каталога и удаления каталога выполняются не так уж просто; система должна переключать контекст между выполнением функций read и unlink. Однако, после того, как команда rmdir обнаружила, что каталог пуст, другой процесс может предпринять попытку создать файл в каталоге функцией creat. Избежать этого пользователи могут только путем использования механизма захвата файла и записи. Тем не менее, раз процесс приступил к выполнению функции unlink, никакой другой процесс не может обратиться к файлу с удаляемой связью, поскольку индексы родительского каталога и файла заблокированы.
Обратимся еще раз к алгоритму функции link и посмотрим, каким образом система снимает с индекса блокировку до завершения выполнения функции. Если бы другой процесс удалил связь файла пока его индекс свободен, он бы тем самым только уменьшил значение счетчика связей; так как значение счетчика связей было увеличено перед удалением связи, это значение останется положительным. Следовательно, файл не может быть удален и система работает надежно. Эта ситуация аналогична той, когда функция unlink вызывается сразу после завершения выполнения функции link.
Другой повод для конкуренции имеет место в том случае, когда один процесс преобразует имя пути поиска файла в индекс файла по алгоритму namei, а другой процесс удаляет каталог, имя которого входит в путь поиска. Допустим, процесс A делает разбор имени "a/ b/c/d" и приостанавливается во время получения индекса для файла "c". Он может приостановиться при попытке заблокировать индекс или при попытке обратиться к дисковому блоку, где этот индекс хранится (см. алгоритмы iget и bread). Если процессу B нужно удалить связь для каталога с именем "c", он может приостановиться по той же самой причине, что и процесс A. Пусть ядро впоследствии решит возобновить процесс B раньше процесса A. Прежде чем процесс A продолжит свое выполнение, процесс B завершится, удалив связь каталога "c" и его содержимое по этой связи. Позднее, процесс A попытается обратиться к несуществующему индексу, который уже был удален. Алгоритм namei, проверяющий в первую очередь неравенство значения счетчика связей нулю, сообщит об ошибке.
Такой проверки, однако, не всегда достаточно, поскольку можно предположить, что какой-нибудь другой процесс создаст в любом месте файловой системы новый каталог и получит тот индекс, который ранее использовался для "c". Процесс A будет заблуждаться, думая, что он обратился к нужному индексу (см. Рисунок 5.32). Как бы то ни было, система сохраняет свою целостность; самое худшее, что может произойти, это обращение не к тому файлу - с возможным нарушением защиты - но соперничества такого рода на практике довольно редки.
5.16 UNLINК
5.16 UNLINК
Системная функция unlink удаляет из каталога точку входа для файла. Синтаксис вызова функции unlink:
unlink(pathname);где pathname указывает имя файла, удаляемое из иерархии каталогов. Если процесс разрывает данную связь файла с каталогом при помощи функции unlink, по указанному в вызове функции имени файл не будет доступен, пока в каталоге не создана еще одна запись с этим именем. Например, при выполнении следующего фрагмента программы:
unlink("myfile"); fd = open("myfile",O_RDONLY);функция open завершится неудачно, поскольку к моменту ее выполнения в текущем каталоге больше не будет файла с именем myfile. Если удаляемое имя является последней связью файла с каталогом, ядро в итоге освобождает все информационные блоки файла. Однако, если у файла было несколько связей, он остается все еще доступным под другими именами.
5.17 АБСТРАКТНЫЕ ОБРАЩЕНИЯ К ФАЙЛОВЫМ СИСТЕМАМ
5.17 АБСТРАКТНЫЕ ОБРАЩЕНИЯ К ФАЙЛОВЫМ СИСТЕМАМ
Уайнбергером было введено понятие "тип файловой системы" для объяснения механизма работы принадлежавшей ему сетевой файловой системы (см. краткое описание этого механизма в [Killian 84]) и в позднейшей версии системы V поддерживаются основополагающие принципы его схемы. Наличие типа файловой системы дает ядру возможность поддерживать одновременно множество файловых систем, таких как сетевые файловые системы (глава 13) или даже файловые системы из других операционных систем. Процессы пользуются для обращения к файлам обычными функциями системы UNIX, а ядро устанавливает соответствие между общим набором файловых операций и операциями, специфичными для каждого типа файловой системы.
5.18 СОПРОВОЖДЕНИЕ ФАЙЛОВОЙ СИСТЕМЫ
5.18 СОПРОВОЖДЕНИЕ ФАЙЛОВОЙ СИСТЕМЫ
Ядро поддерживает целостность системы в своей обычной работе. Тем не менее, такие чрезвычайные обстоятельства, как отказ питания, могут привести к фатальному сбою системы, в результате которого содержимое системы утрачивает свою согласованность: большинство данных в файловой системе доступно для использования, но некоторая несогласованность между ними имеет место. Команда fsck проверяет согласованность данных и в случае необходимости вносит в файловую систему исправления. Она обращается к файловой системе через блочный или строковый интерфейс (глава 10) в обход традиционных методов доступа к файлам. В этом разделе рассматриваются некоторые примеры противоречивости данных, которая обнаруживается командой fsck.
Дисковый блок может принадлежать более чем одному индексу или списку свободных блоков. Когда файловая система открывается в первый раз, все дисковые блоки находятся в списке свободных блоков. Когда дисковый блок выбирается для использования, ядро удаляет его номер из списка свободных блоков и назначает блок индексу. Ядро не может переназначить дисковый блок другому индексу до тех пор, пока блок не будет возвращен в список свободных блоков. Таким образом, дисковый блок может либо находиться в списке свободных блоков, либо быть назначенным одному из индексов. Рассмотрим различные ситуации, могущие иметь место при освобождении ядром дискового блока, принадлежавшего файлу, с возвращением номера блока в суперблок, находящийся в памяти, и при выделении дискового блока новому файлу. Если ядро записывало на диск индекс и блоки нового файла, но перед внесением изменений в индекс прежнего файла на диске произошел сбой, оба индекса будут адресовать к одному и тому же номеру дискового блока. Подобным же образом, если ядро переписывало на диск суперблок и его списки свободных ресурсов и перед переписью старого индекса случился сбой, дисковый блок появится одновременно и в списке свободных блоков, и в старом индексе.
Если блок отсутствует как в списке свободных блоков, так и в файле, файловая система является несогласованной, ибо, как уже говорилось выше, все блоки обязаны где-нибудь присутствовать. Такая ситуация могла бы произойти, если бы блок был удален из файла и помещен в список свободных блоков в суперблоке. Если производилась запись прежнего файла на диск и система дала сбой перед записью суперблока, блок будет отсутствовать во всех списках, хранящихся на диске.
Индекс может иметь счетчик связей с ненулевым значением при том, что его номер отсутствует во всех каталогах файловой системы. Все файлы, за исключением каналов (непоименованных), должны присутствовать в древовидной структуре файловой системы. Если система дала сбой после создания канала или обычного файла, но перед созданием соответствующей этому каналу или файлу точки входа в каталог, индекс будет иметь в поле счетчика связей установленное значение, пусть даже он явно не присутствует в файловой системе. Еще одна проблема может возникнуть, если с помощью функции unlink была удалена связь каталога без проверки удаления из каталога всех содержащихся в нем связей с отдельными файлами.
Если формат индекса неверен (например, если значение поля типа файла не определено), значит где-то имеется ошибка. Это может произойти, если администратор смонтировал файловую систему, которая отформатирована неправильно. Ядро обращается к тем дисковым блокам, которые, как кажется ядру, содержат индексы, но в действительности оказывается, что они содержат данные.
Если номер индекса присутствует в записи каталога, но сам индекс свободен, файловая система является несогласованной, поскольку номер индекса в записи каталога должен быть номером назначенного индекса. Это могло бы произойти, если бы ядро, создавая новый файл и записывая на диск новую точку входа в каталог, не успела бы скопировать на диск индекс файла из-за сбоя. Также это может случиться, если процесс, удаляя связь файла с каталогом, запишет освободившийся индекс на диск, но не успеет откорректировать каталог из-за сбоя. Возникновение подобных ситуаций можно предотвратить, копируя на диск результаты работы в надлежащем порядке.
Если число свободных блоков или свободных индексов, записанное в суперблоке, не совпадает с их количеством на диске, файловая система так же является несогласованной. Итоговая информация в суперблоке всегда должна соответствовать информации о текущем состоянии файловой системы.
5.19 ВЫВОДЫ
5.19 ВЫВОДЫ
Этой главой завершается первая часть книги, посвященная рассмотрению особенностей файловой системы. Глава познакомила пользователя с тремя таблицами, принадлежащими ядру: таблицей пользовательских дескрипторов файла, системной таблицей файлов и таблицей монтирования. В ней рассмотрены алгоритмы выполнения системных функций, имеющих отношение к файловой системе, и взаимодействие между этими функциями. Исследованы некоторые абстрактные свойства файловой системы, позволяющие системе UNIX поддерживать файловые системы различных типов. Наконец, описан механизм выполнения команды fsck, контролирующей целостность и согласованность данных в файловой системе.
5.20 УПРАЖНЕНИЯ
5.20 УПРАЖНЕНИЯ
1. Рассмотрим программу, приведенную на Рисунке 5.35. Какое значение возвращает каждая операция read и что при этом содержится в буфере? Опишите, что происходит в ядре во время выполнения каждого вызова read.
2. Вновь вернемся к программе на Рисунке 5.35 и предположим, что оператор lseek(fd,9000L,0); стоит перед первым обращением к функции read. Что ищет процесс и что при этом происходит в ядре?
3. Процесс может открыть файл для работы в режиме добавления записей в конец файла, при этом имеется в виду, что каждая операция записи располагает данные по адресу смещения, указывающего текущий конец файла. Таким образом, два процесса могут открыть файл для работы в режиме добавления записей в конец файла и вводить данные, не опасаясь затереть записи друг другу. Что произойдет, если процесс откроет файл в режиме добавления в конец, а записывающую головку установит на начало файла?
4. Библиотека стандартных подпрограмм ввода-вывода повышает эффективность выполнения пользователем операций чтения и записи благодаря буферизации данных в библиотеке и сохранению большого количества модулей обращения к операционной системе, необходимых пользователю. Как бы вы реализовали библиотечные функции fread и fwrite? Что должны делать библиотечные функции fopen и fclose?
6.1 СОСТОЯНИЯ ПРОЦЕССА И ПЕРЕХОДЫ МЕЖДУ НИМИ
6.1 СОСТОЯНИЯ ПРОЦЕССА И ПЕРЕХОДЫ МЕЖДУ НИМИ
Как уже отмечалось в главе 2, время жизни процесса можно теоретически разбить на несколько состояний, описывающих процесс. Полный набор состояний процесса содержится в следующем перечне:
Процесс выполняется в режиме задачи. Процесс выполняется в режиме ядра. Процесс не выполняется, но готов к запуску под управлением ядра. Процесс приостановлен и находится в оперативной памяти. Процесс готов к запуску, но программа подкачки (нулевой процесс) должна еще загрузить процесс в оперативную память, прежде чем он будет запущен под управлением ядра. Это состояние будет предметом обсуждения в главе 9 при рассмотрении системы подкачки. Процесс приостановлен и программа подкачки выгрузила его во внешнюю память, чтобы в оперативной памяти освободить место для других процессов. Процесс возвращен из привилегированного режима (режима ядра) в непривилегированный (режим задачи), ядро резервирует его и переключает контекст на другой процесс. Об отличии этого состояния от состояния 3 (готовность к запуску) пойдет речь ниже. Процесс вновь создан и находится в переходном состоянии; процесс существует, но не готов к выполнению, хотя и не приостановлен. Это состояние является начальным состоянием всех процессов, кроме нулевого. Процесс вызывает системную функцию exit и прекращает существование. Однако, после него осталась запись, содержащая код выхода, и некоторая хронометрическая статистика, собираемая родительским процессом. Это состояние является последним состоянием процесса.Рисунок 6.1 представляет собой полную диаграмму переходов процесса из состояния в состояние. Рассмотрим с помощью модели переходов типичное поведение процесса. Ситуации, которые будут обсуждаться, несколько искусственны и процессы не всегда имеют дело с ними, но эти ситуации вполне применимы для иллюстрации различных переходов. Начальным состоянием модели является создание процесса родительским процессом с помощью системной функции fork; из этого состояния процесс неминуемо переходит в состояние готовности к запуску (3 или 5). Для простоты предположим, что процесс перешел в состояние "готовности к запуску в памяти" (3). Планировщик процессов в конечном счете выберет процесс для выполнения и процесс перейдет в состояние "выполнения в режиме ядра", где доиграет до конца роль, отведенную ему функцией fork.
6.2.1 Области
6.2.1 Области
Ядро в версии V делит виртуальное адресное пространство процесса на совокупность логических областей. Область - это непрерывная зона виртуального адресного пространства процесса, рассматриваемая в качестве отдельного объекта для совместного использования и защиты. Таким образом, команды, данные и стек обычно образуют автономные области, принадлежащие процессу. Несколько процессов могут использовать одну и ту же область. Например, если несколько процессов выполняют одну и ту же программу, вполне естественно, что они используют одну и ту же область команд. Точно так же, несколько процессов могут объединиться и использовать общую область разделяемой памяти.
Ядро поддерживает таблицу областей и выделяет запись в таблице для каждой активной области в системе. В разделе 6.5 описываются поля таблицы областей и операции над областями более подробно, но на данный момент предположим, что таблица областей содержит информацию, позволяющую определить местоположение области в физической памяти. Каждый процесс имеет частную таблицу областей процесса. Записи этой таблицы могут располагаться, в зависимости от конкретной реализации, в таблице процессов, в адресном пространстве процесса или в отдельной области памяти; для простоты предположим, что они являются частью таблицы процессов. Каждая запись частной таблицы областей содержит указатель на соответствующую запись общей таблицы областей и первый виртуальный адрес процесса в данной области. Разделяемые области могут иметь разные виртуальные адреса в каждом процессе. Запись частной таблицы областей также содержит поле прав доступа, в котором указывается тип доступа, разрешенный процессу: только чтение, только запись или только исполнение. Частная таблица областей и структура области аналогичны таблице файлов и структуре индекса в файловой системе: несколько процессов могут совместно использовать адресное пространство через область, подобно тому, как они разделяют доступ к файлу с помощью индекса; каждый процесс имеет доступ к области благодаря использованию записи в частной таблице областей, точно так же он обращается к индексу, используя соответствующие записи в таблице пользовательских дескрипторов файла и в таблице файлов, принадлежащей ядру.
На Рисунке 6.2 изображены два процесса, A и B, показаны их области, частные таблицы областей и виртуальные адреса, в которых эти области соединяются. Процессы разделяют область команд 'a' с виртуальными адресами 8К и 4К соответственно. Если процесс A читает ячейку памяти с адресом 8К, а процесс
6.2.2 Страницы и таблицы страниц
6.2.2 Страницы и таблицы страниц
В этом разделе описывается модель организации памяти, которой мы будем пользоваться на протяжении всей книги, но которая не является особенностью системы UNIX. В организации памяти, базирующейся на страницах, физическая память разделяется на блоки одинакового размера, называемые страницами. Обычный размер страниц составляет от 512 байт до 4 Кбайт и определяется конфигурацией технических средств. Каждая адресуемая ячейка памяти содержится в некоторой странице и, следовательно, каждая ячейка памяти может адресоваться парой (номер страницы, смещение внутри страницы в байтах). Например, если объем машинной памяти составляет 2 в 32-й степени байт, а размер страницы 1 Кбайт, общее число страниц - 2 в 22-й степени; можно считать, что каждый 32-разрядный адрес состоит из 22-разрядного номера страницы и 10-разрядного смещения внутри страницы (Рисунок 6.3).
Когда ядро назначает области физические страницы памяти, необходимости в назначении смежных страниц и вообще в соблюдении какой-либо очередности при назначении не возникает. Целью страничной организации памяти является повышение гибкости назначения физической памяти, которое строится по аналогии с назначением дисковых блоков файлам в файловой системе. Как и при назначении блоков файлу, так и при назначении области страниц памяти, преследуется задача повышения гибкости и сокращения неиспользуемого (вследствие фрагментации) пространства памяти.
6.2.3 Размещение ядра
6.2.3 Размещение ядра
Несмотря на то, что ядро работает в контексте процесса, отображение виртуальных адресов, связанных с ядром, осуществляется независимо от всех процессов. Программы и структуры данных ядра резидентны в системе и совместно используются всеми процессами. При запуске системы происходит загрузка программ ядра в память с установкой соответствующих таблиц и регистров для отображения виртуальных адресов ядра в физические. Таблицы страниц для ядра имеют структуру, аналогичную структуре таблицы страниц, связанной с процессом, а механизмы отображения виртуальных адресов ядра похожи на механизмы, используемые для отображения пользовательских адресов. На многих машинах виртуальное адресное пространство процесса разбивается на несколько классов, в том числе системный и пользовательский, и каждый класс имеет свои собственные таблицы страниц. При работе в режиме ядра система разрешает доступ к адресам ядра, при работе же в режиме задачи такого рода доступ запрещен. Поэтому, когда в результате прерывания или выполнения системной функции происходит переход из режима задачи в режим ядра, операционная система по договоренности с техническими средствами разрешает ссылки на адреса ядра, а при возврате в режим ядра эти ссылки уже запрещены. В других машинах можно менять преобразование виртуальных адресов, загружая специальные регистры во время работы в режиме ядра.
На Рисунке 6.6 приведен пример, в котором виртуальные адреса от 0 до 4М-1 принадлежат ядру, а начиная с 4М - процессу. Имеются две группы регистров управления памятью, одна для адресов ядра и одна для адресов процесса, причем каждой группе соответствует таблица страниц, хранящая номера физических страниц со ссылкой на адреса виртуальных страниц. Адресные ссылки с использованием группы регистров ядра допускаются системой только в режиме ядра; следовательно, для перехода между режимом ядра и режимом задачи требуется только, чтобы система разрешила или запретила адресные ссылки с использованием группы регистров ядра.
В некоторых системах ядро загружается в память таким образом, что большая часть виртуальных адресов ядра совпадает с физическими адресами и функция преобразования виртуальных адресов в физические превращается в функцию тождественности. Работа с пространством процесса, тем не менее, требует, чтобы преобразование виртуальных адресов в физические производилось ядром.
6.2.4 Пространство процесса
6.2.4 Пространство процесса
Каждый процесс имеет свое собственное пространство, однако ядро обращается к пространству выполняющегося процесса так, как если бы в системе оно было единственным. Ядро подбирает для текущего процесса карту трансляции виртуальных адресов, необходимую для работы с пространством процесса. При компиляции загрузчик назначает переменной 'u' (имени пространства процесса) фиксированный виртуальный адрес. Этот адрес известен остальным компонентам ядра, в частности модулю, выполняющему переключение контекста (раздел 6.4.3). Ядру также известно, какие таблицы управления памятью используются при трансляции виртуальных адресов, принадлежащих пространству процесса, и благодаря этому ядро может быстро перетранслировать виртуальный адрес пространства процесса в другой физический адрес. По одному и тому же виртуальному адресу ядро может получить доступ к двум разным физическим адресам, описывающим пространства двух процессов.
Процесс имеет доступ к своему пространству, когда выполняется в режиме ядра, но не тогда, когда выполняется в режиме задачи. Поскольку ядро в каждый момент времени работает только с одним пространством процесса, используя для доступа виртуальный адрес, пространство процесса частично описывает контекст процесса, выполняющегося в системе. Когда ядро выбирает процесс для исполнения, оно ищет в физической памяти соответствующее процессу пространство и делает его доступным по виртуальному адресу.
6.2 ФОРМАТ ПАМЯТИ СИСТЕМЫ
6.2 ФОРМАТ ПАМЯТИ СИСТЕМЫ
Предположим, что физическая память машины имеет адреса, начиная с 0 и кончая адресом, равным объему памяти в байтах. Как уже отмечалось в главе 2, процесс в системе UNIX состоит из трех логических секций: команд, данных и стека. (Общую память, которая рассматривается в главе 11, можно считать в данном контексте частью секции данных). В секции команд хранится набор машинных инструкций, исполняемых под управлением процесса; адресами в секции команд выступают адреса команд (для команд перехода и обращений к подпрограммам), адреса данных (для обращения к глобальным переменным) и адреса стека (для обращения к структурам данных, которые локализованы в подпрограммах). Если адреса в сгенерированном коде трактовать как адреса в физической памяти, два процесса не смогут параллельно выполняться, если их адреса перекрываются. Компилятор мог бы генерировать адреса, непересекающиеся у разных программ, но на универсальных ЭВМ такой порядок не практикуется, поскольку объем памяти машины ограничен, а количество транслируемых программы неограничено. Даже если для того, чтобы избежать излишнего пересечения адресов в процессе их генерации, машина будет использовать некоторый набор эвристических процедур, подобная реализация не будет достаточно гибкой и не сможет удовлетворять предъявляемым к ней требованиям.
Поэтому компилятор генерирует адреса для виртуального адресного пространства заданного диапазона, а устройство управления памятью, называемое диспетчером памяти, транслирует виртуальные адреса, сгенерированные компилятором, в адреса ячеек, расположенных в физической памяти. Компилятору нет необходимости знать, в какое место в памяти ядро потом загрузит выполняемую программу. На самом деле, в памяти одновременно могут существовать несколько копий программы: все они могут выполняться, используя одни и те же виртуальные адреса, фактически же ссылаясь на разные физические ячейки. Те подсистемы ядра и аппаратные средства, которые сотрудничают в трансляции виртуальных адресов в физические, образуют подсистему управления памятью.
6.3 КОНТЕКСТ ПРОЦЕССА
6.3 КОНТЕКСТ ПРОЦЕССА
Контекст процесса включает в себя содержимое адресного пространства задачи, выделенного процессу, а также содержимое относящихся к процессу аппаратных регистров и структур данных ядра. С формальной точки зрения, контекст процесса объединяет в себе пользовательский контекст, регистровый контекст и системный контекст (*). Пользовательский контекст состоит из команд и данных процесса, стека задачи и содержимого совместно используемого пространства памяти в виртуальных адресах процесса. Те части виртуального адресного пространства процесса, которые периодически отсутствуют в оперативной памяти вследствие выгрузки или замещения страниц, также включаются в пользовательский контекст.
Регистровый контекст состоит из следующих компонент:
Счетчика команд, указывающего адрес следующей команды, которую будет выполнять центральный процессор; этот адрес является виртуальным адресом внутри пространства ядра или пространства задачи. Регистра состояния процессора (PS), который указывает аппаратный статус машины по отношению к процессу. Регистр PS, например, обычно содержит подполя, которые указывают, является ли результат последних вычислений нулевым, положительным или отрицательным, переполнен ли регистр с установкой бита переноса и т.д. Операции, влияющие на установку регистра PS, выполняются для отдельного процесса, потому-то в регистре PS и содержится аппаратный статус машины по отношению к процессу. В других имеющих важное значение подполях регистра PS указывается текущий уровень прерывания процессора, а также текущий и предыдущий режимы выполнения процесса (режим ядра/задачи). По значению подполя текущего режима выполнения процесса устанавливается, может ли процесс выполнять привилегированные команды и обращаться к адресному пространству ядра. Указателя вершины стека, в котором содержится адрес следующего элемента стека ядра или стека задачи, в соответствии с режимом выполнения процесса. В зависимости от архитектуры машины указатель вершины стека показывает на следующий свободный элемент стека или на последний используемый элемент. От архитектуры машины также зависит направление увеличения стека (к старшим или младшим адресам), но для нас сейчас эти вопросы несущественны. Регистров общего назначения, в которых содержится информация, сгенерированная процессом во время его выполнения. Чтобы облегчить последующие объяснения, выделим среди них два регистра - регистр 0 и регистр 1 - для дополнительного использования при передаче информации между процессами и ядром.Системный контекст процесса имеет "статическую часть" (первые три элемента в нижеследующем списке) и "динамическую часть" (последние два элемента). На протяжении всего времени выполнения процесс постоянно располагает одной статической частью системного контекста, но может иметь переменное число динамических частей. Динамическую часть системного контекста можно представить в виде стека, элементами которого являются контекстные уровни, которые помещаются в стек ядром или выталкиваются из стека при наступлении различных событий. Системный контекст включает в себя следующие компоненты:
Запись в таблице процессов, описывающая состояние процесса (раздел 6.1) и содержащая различную управляющую информацию, к которой ядро всегда может обратиться. Часть адресного пространства задачи, выделенная процессу, где хранится управляющая информация о процессе, доступная только в контексте процесса. Общие управляющие параметры, такие как приоритет процесса, хранятся в таблице процессов, поскольку обращение к ним должно производиться за пределами контекста процесса. Записи частной таблицы областей процесса, общие таблицы областей и таблицы страниц, необходимые для преобразования виртуальных адресов в физические, в связи с чем в них описываются области команд, данных, стека и другие области, принадлежащие процессу. Если несколько процессов совместно используют общие области, эти области входят составной частью в контекст каждого процесса, поскольку каждый процесс работает с этими областями независимо от других процессов. В задачи управления памятью входит идентификация участков виртуального адресного пространства процесса, не являющихся резидентными в памяти. Стек ядра, в котором хранятся записи процедур ядра, если процесс выполняется в режиме ядра. Несмотря на то, что все процессы пользуются одними и теми же программами ядра, каждый из них имеет свою собственную копию стека ядра для хранения индивидуальных обращений к функциям ядра. Пусть, например, один процесс вызывает функцию creat и приостанавливается в ожидании назначения нового индекса, а другой процесс вызывает функцию read и приостанавливается в ожидании завершения передачи данных с диска в память. Оба процесса обращаются к функциям ядра и у каждого из них имеется в наличии отдельный стек, в котором хранится последовательность выполненных обращений. Ядро должно иметь возможность восстанавливать содержимое стека ядра и положение указателя вершины стека для того, чтобы возобновлять выполнение процесса в режиме ядра. В различных системах стек ядра часто располагается в пространстве процесса, однако этот стек является логически-независимым и, таким образом, может помещаться в самостоятельной области памяти. Когда процесс выполняется в режиме задачи, соответствующий ему стек ядра пуст. Динамическая часть системного контекста процесса, состоящая из нескольких уровней и имеющая вид стека, который освобождается от элементов в порядке, обратном порядку их поступления. На каждом уровне системного контекста содержится информация, необходимая для восстановления предыдущего уровня и включающая в себя регистровый контекст предыдущего уровня.(*) Используемые в данном разделе термины "пользовательский контекст" (user-level context), "регистровый контекст" (register context), "системный контекст" (system-level context) и "контекстные уровни" (context layers) введены автором.
Ядро помещает контекстный уровень в стек при возникновении прерывания, при обращении к системной функции или при переключении контекста процесса. Контекстный уровень выталкивается из стека после завершения обработки прерывания, при возврате процесса в режим задачи после выполнения системной функции, или при переключении контекста. Таким образом, переключение контекста влечет за собой как помещение контекстного уровня в стек, так и извлечение уровня из стека: ядро помещает в стек контекстный уровень старого процесса, а извлекает из стека контекстный уровень нового процесса. Информация, необходимая для восстановления текущего контекстного уровня, хранится в записи таблицы процессов.
На Рисунке 6.8 изображены компоненты контекста процесса. Слева на рисунке изображена статическая часть контекста. В нее входят: пользовательский контекст, состоящий из программ процесса (машинных инструкций), данных, стека и разделяемой памяти (если она имеется), а также статическая часть системного контекста, состоящая из записи таблицы процессов, пространства процесса и записей частной таблицы областей (информации, необходимой для трансляции виртуальных адресов пользовательского контекста). Справа на рисунке изображена динамическая часть контекста. Она имеет вид стека и включает в себя несколько элементов, хранящих регистровый контекст предыдущего уровня и стек ядра для текущего уровня. Нулевой контекстный уровень представляет собой пустой уровень, относящийся к пользовательскому контексту; увеличение стека здесь идет в адресном пространстве задачи, стек ядра недействителен. Стрелка, соединяющая между собой статическую часть системного контекста и верхний уровень динамической части контекста, означает то, что в таблице процессов хранится информация, позволяющая ядру восстанавливать текущий контекстный уровень процесса.
6.4.1 Прерывания и особые ситуации
6.4.1 Прерывания и особые ситуации
Система отвечает за обработку всех прерываний, поступили ли они от аппаратуры (например, от таймера или от периферийных устройств), от программ (в связи с выполнением инструкций, вызывающих возникновение "программных прерываний") или явились результатом особых ситуаций (таких как обращение к отсутствующей странице). Если центральный процессор ведет обработку на более низком уровне по сравнению с уровнем поступившего прерывания, то перед выполнением следующей инструкции его работа прерывается, а уровень прерывания процессора повышается, чтобы другие прерывания с тем же (или более низким) уровнем не могли иметь места до тех пор, пока ядро не обработает текущее прерывание, благодаря чему обеспечивается сохранение целостности структур данных ядра. В процессе обработки прерывания ядро выполняет следующую последовательность действий:
Сохраняет текущий регистровый контекст выполняющегося процесса и создает в стеке (помещает в стек) новый контекстный уровень. Устанавливает "источник" прерывания, идентифицируя тип прерывания (например, прерывание по таймеру или от диска) и номер устройства, вызвавшего прерывание (например, если прерывание вызвано дисковым запоминающим устройством). При возникновении прерывания система получает от машины число, которое использует в качестве смещения в таблице векторов прерывания. Содержимое векторов прерывания в разных машинах различно, но, как правило, в них хранится адрес программы обработки прерывания, соответствующей источнику прерывания, и указывается путь поиска параметра для программы. В качестве примера рассмотрим таблицу векторов прерывания, приведенную на Рисунке 6.9. Если источником прерывания явился терминал, ядро получает от аппаратуры номер прерывания, равный 2, и вызывает программу обработки прерываний от терминала, именуемую ttyintr.6.4.2 Взаимодействие с операционной
6.4.2 Взаимодействие с операционной системой через вызовы системных функций
Такого рода взаимодействие с ядром было предметом рассмотрения в предыдущих главах, где шла речь об обычном вызове функций. Очевидно, что обычная последовательность команд обращения к функции не в состоянии переключить выполнения процесса с режима задачи на режим ядра. Компилятор с языка Си использует библиотеку функций, имена которых совпадают с именами системных функций, иначе ссылки на системные функции в пользовательских программах были бы ссылками на неопределенные имена. В библиотечных функциях обычно исполняется команда, переводящая выполнение процесса в режим ядра и побуждающая ядро к запуску исполняемого кода системной функции. В дальнейшем эта команда именуется "внутренним прерыванием операционной системы". Библиотечные процедуры исполняются в режиме задачи, а взаимодействие с операционной системой через вызов системной функции можно определить в нескольких словах как особый случай программы обработки прерывания. Библиотечные функции передают ядру уникальный номер системной функции одним из машинно-зависимых способов - либо как параметр внутреннего прерывания операционной системы, либо через отдельный регистр, либо через стек - а ядро таким образом определяет тип вызываемой функции.
6.4.3 Переключение контекста
6.4.3 Переключение контекста
Если обратиться к диаграмме состояний процесса (Рисунок 6.1), можно увидеть, что ядро разрешает производить переключение контекста в четырех случаях: когда процесс приостанавливает свое выполнение, когда он завершается, когда он возвращается после вызова системной функции в режим задачи, но не является наиболее подходящим для запуска, или когда он возвращается в режим задачи после завершения ядром обработки прерывания, но так же не является наиболее подходящим для запуска. Как уже было показано в главе 2, ядро поддерживает целостность и согласованность своих внутренних структур данных, запрещая произвольно переключать контекст. Прежде чем переключать контекст, ядро должно удостовериться в согласованности своих структур данных: то есть в том, что сделаны все необходимые корректировки, все очереди выстроены надлежащим образом, установлены соответствующие блокировки, позволяющие избежать вмешательства со стороны других процессов, что нет излишних блокировок и т.д. Например, если ядро выделяет буфер, считывает блок из файла и приостанавливает выполнение до завершения передачи данных с диска, оно оставляет буфер заблокированным, чтобы другие процессы не смогли обратиться к буферу. Но если процесс исполняет системную функцию link, ядро снимает блокировку с первого индекса перед тем, как снять ее со второго индекса, и тем самым предотвращает возникновение тупиковых ситуаций (взаимной блокировки).
Ядро выполняет переключение контекста по завершении системной функции exit, поскольку в этом случае больше ничего не остается делать. Кроме того, переключение контекста допускается, когда процесс приостанавливает свою работу, поскольку до момента возобновления может пройти немало времени, в течение которого могли бы выполняться другие процессы. Переключение контекста допускается и тогда, когда процесс не имеет преимуществ перед другими процессами при исполнении, с тем, чтобы обеспечить более справедливое планирование процессов: если по выходе процесса из системной функции или из прерывания обнаруживается, что существует еще один процесс, который имеет более высокий приоритет и ждет выполнения, то было бы несправедливо оставлять его в ожидании.
Процедура переключения контекста похожа на процедуры обработки прерываний и обращения к системным функциям, если не считать того, что ядро вместо предыдущего контекстного уровня текущего процесса восстанавливает контекстный уровень другого процесса. Причины, вызвавшие переключение контекста, при этом не имеют значения. На механизм переключения контекста не влияет и метод выбора следующего процесса для исполнения.
6.4.4 Сохранение контекста на случай аварийного завершения
6.4.4 Сохранение контекста на случай аварийного завершения
Существуют ситуации, когда ядро вынуждено аварийно прерывать текущий порядок выполнения и немедленно переходить к исполнению ранее сохраненного контекста. В последующих разделах, где пойдет речь о приостановлении выполнения и о сигналах, будут описаны обстоятельства, при которых процессу приходится внезапно изменять свой контекст; в данном же разделе рассматривается механизм исполнения предыдущего контекста. Алгоритм сохранения контекста называется setjmp, а алгоритм восстановления контекста - longjmp (***). Механизм работы алгоритма setjmp похож на механизм функции save_context, рассмотренный в предыдущем разделе, если не считать того, что функция save_context помещает новый контекстный уровень в стек, в то время как setjmp сохраняет контекст в пространстве процесса и после выхода из него выполнение продолжается в прежнем контекстном уровне. Когда ядру понадобится восстановить контекст, сохраненный в результате работы алгоритма setjmp, оно исполнит алгоритм longjmp, который восстанавливает контекст из пространства процесса и имеет, как и setjmp, код завершения, равный 1.
6.4.5 Копирование данных между
6.4.5 Копирование данных между адресным пространством системы и адресным пространством задачи
До сих пор речь шла о том, что процесс выполняется в режиме ядра или в режиме задачи без каких-либо перекрытий (пересечений) между режимами. Однако, при выполнении большинства системных функций, рассмотренных в последней главе, между пространством ядра и пространством задачи осуществляется пересылка данных, например, когда идет копирование параметров вызываемой функции из пространства задачи в пространство ядра или когда производится передача данных из буферов ввода-вывода в процессе выполнения функции read. На многих машинах ядро системы может непосредственно ссылаться на адреса, принадлежащие адресному пространству задачи. Ядро должно убедиться в том, что адрес, по которому производится запись или считывание, доступен, как будто бы работа ведется в режиме задачи; в противном случае произошло бы нарушение стандартных методов защиты и ядро, пусть неумышленно, стало бы обращаться к адресам, которые находятся за пределами адресного пространства задачи (и, возможно, принадлежат структурам данных ядра). Поэтому передача данных между пространством ядра и пространством задачи является "дорогим предприятием", требующим для своей реализации нескольких команд.
6.4 СОХРАНЕНИЕ КОНТЕКСТА ПРОЦЕССА
6.4 СОХРАНЕНИЕ КОНТЕКСТА ПРОЦЕССА
Как уже говорилось ранее, ядро сохраняет контекст процесса, помещая в стек новый контекстный уровень. В частности, это имеет место, когда система получает прерывание, когда процесс вызывает системную функцию или когда ядро выполняет переключение контекста. Каждый из этих случаев подробно рассматривается в этом разделе.
6.5.1 Блокировка области и снятие блокировки
6.5.1 Блокировка области и снятие блокировки
Операции блокировки и снятия блокировки для области выполняются независимо от операций выделения и освобождения области, подобно тому, как операции блокирования-разблокирования индекса в файловой системе выполняются независимо от операций назначения-освобождения индекса (алгоритмы iget и iput). Таким образом, ядро может заблокировать и выделить область, а потом снять блокировку, не освобождая области. Точно также, когда ядру понадобится обратиться к выделенной области, оно сможет заблокировать область, чтобы запретить доступ к ней со стороны других процессов, и позднее снять блокировку.
6.5.2 Выделение области
6.5.2 Выделение области
Ядро выделяет новую область (по алгоритму allocreg, Рисунок 6.18) во время выполнения системных функций fork, exec и shmget (получить разделяемую память). Ядро поддерживает таблицу областей, записям которой соответствуют точки входа либо в списке свободных областей, либо в списке активных областей. При выделении записи в таблице областей ядро выбирает из списка свободных областей первую доступную запись, включает ее в список активных областей, блокирует область и делает пометку о ее типе (разделяемая или частная). За некоторым исключением каждый процесс ассоциируется с исполняемым файлом (после того, как была выполнена команда exec), и в алгоритме allocreg поле индекса в записи таблицы областей устанавливается таким образом, чтобы оно указывало на индекс исполняемого файла. Индекс идентифицирует область для ядра, поэтому другие процессы могут при желании разделять область. Ядро увеличивает значение счетчика ссылок на индекс, чтобы помешать другим процессам удалять содержимое файла при выполнении функции unlink, об этом еще будет идти речь в разделе 7.5. Результатом алгоритма allocreg является назначение и блокировка области.
6.5.3 Присоединение области к процессу
6.5.3 Присоединение области к процессу
Ядро присоединяет область к адресному пространству процесса во время выполнения системных функций fork, exec и shmat (алгоритм attachreg, Рисунок 6.19). Область может быть вновь назначаемой или уже существующей, которую процесс будет использовать совместно с другими процессами. Ядро выбирает свободную запись в частной таблице областей процесса, устанавливает в ней поле типа таким образом, чтобы оно указывало на область команд, данных, разделяемую память или область стека, и записывает виртуальный адрес, по которому область будет размещаться в адресном пространстве процесса. Процесс не должен выходить за предел установленного системой ограничения на максимальный виртуальный адрес, а виртуальные адреса новой области не должны пересекаться с адресами существующих уже областей. Например, если система ограничила максимально-допустимое значение виртуального адреса процесса 8 мегабайтами, то привязать область размером 1 мегабайт к виртуальному адресу 7.5M не удастся. Если же присоединение области допустимо, ядро увеличивает значение поля, описывающего размер области процесса в записи таблицы процессов, на величину присоединяемой области, а также увеличивает значение счетчика ссылок на область.
Кроме того, в алгоритме attachreg устанавливаются начальные значения группы регистров управления памятью, выделенных процессу. Если область ранее не присоединялась к какому-либо процессу, ядро с помощью функции growreg (см. следующий раздел) заводит для области новые таблицы страниц; в противном случае используются уже существующие таблицы страниц. Алгоритм завершает работу, возвращая указатель на точку входа в частную таблицу областей процесса, соответствующую вновь присоединенной области. Допустим, например, что ядру нужно подключить к процессу по виртуальному адресу 0 существующую (разделяемую) область, имеющую размер 7 Кбайт (Рисунок 6.20). Оно выделяет новую группу регистров управления памятью и заносит в них адрес таблицы страниц области, виртуальный адрес области в пространстве процесса (0) и размер таблицы страниц (9 записей).
6.5.4 Изменение размера области
6.5.4 Изменение размера области
Процесс может расширять или сужать свое виртуальное адресное пространство с помощью функции sbrk. Точно так же и стек процесса расширяется автоматически (то есть для этого процессу не нужно явно обращаться к определенной функции) в соответствии с глубиной вложенности обращений к подпрограммам. Изменение размера области производится внутри ядра по алгоритму growreg (Рисунок 6.21). При расширении области ядро проверяет, не будут ли виртуальные адреса расширяемой области пересекаться с адресами какой-нибудь другой области и не повлечет ли расширение области за собой выход процесса за пределы максимально-допустимого виртуального пространства памяти. Ядро никогда не использует алгоритм growreg для увеличения размера разделяемой области, уже присоединенной к нескольким процессам; поэтому оно не беспокоится о том, не приведет ли увеличение размера области для одного процесса к превышению другим процессом системного ограничения, накладываемого на размер процесса. При работе с существующей областью ядро использует алгоритм growreg в двух случаях: выполняя функцию sbrk по отношению к области данных процесса и реализуя автоматическое увеличение стека задачи. Обе эти области (данных и стека) частного типа. Области команд и разделяемой памяти после инициализации не могут расширяться. Этот момент будет пояснен в следующей главе.
6.5.5 Загрузка области
6.5.5 Загрузка области
В системе, где поддерживается подкачка страниц по обращению, ядро может "отображать" файл в адресное пространство процесса во время выполнения функции exec, подготавливая последующее чтение по запросу отдельных физических страниц (см. главу 9). Если же подкачка страниц по обращению не поддерживается, ядру приходится копировать исполняемый файл в память, загружая области процесса по указанным в файле виртуальным адресам. Ядро может присоединить область к разным виртуальным адресам, по которым будет загружаться содержимое файла, создавая таким образом "разрыв" в таблице страниц (вспомним Рисунок 6.20). Эта возможность может пригодиться, например, когда требуется проявлять ошибку памяти (memory fault) в случае обращения пользовательских программ к нулевому адресу (если последнее запрещено). Переменные указатели в программах иногда задаются неверно (отсутствует проверка их значений на равенство 0) и в результате не могут использоваться в качестве указателей адресов. Если страницу с нулевым адресом соответствующим образом защитить, процессы, случайно обратившиеся к этому адресу, натолкнутся на ошибку и будут аварийно завершены, и это ускорит обнаружение подобных ошибок в программах.
6.5.6 Освобождение области
6.5.6 Освобождение области
Если область не присоединена уже ни к какому процессу, она может быть освобождена ядром и возвращена в список свободных областей (Рисунок 6.25). Если область связана с индексом, ядро освобождает и индекс с помощью алгоритма iput, учитывая значение счетчика ссылок на индекс, установленное в алгоритме allocreg. Ядро освобождает все связанные с областью физические ресурсы, такие как таблицы страниц и собственно страницы физической памяти. Предположим, например, что ядру нужно освободить область стека, описанную на Рисунке 6.22. Если счетчик ссылок на область имеет нулевое значение, ядро освободит 7 страниц физической памяти вместе с таблицей страниц.
6.5.7 Отсоединение области от процесса
6.5.7 Отсоединение области от процесса
Ядро отсоединяет области при выполнении системных функций exec, exit и shmdt (отсоединить разделяемую память). При этом ядро корректирует соответствующую запись и разъединяет связь с физической памятью, делая недействительными связанные с областью регистры управления памятью (алгоритм detachreg, Рисунок 6.26). Механизм преобразования адресов после этого будет относиться уже к процессу, а не к области (как в алгоритме freereg). Ядро уменьшает значение счетчика ссылок на область и значение поля, описывающего размер процесса в записи таблицы процессов, в соответствии с размером области. Если значение счетчика становится равным 0 и если нет причины оставлять область без изменений (область не является областью разделяемой памяти или областью команд с признаками неотъемлемой части процесса, о чем будет идти речь в разделе 7.5), ядро освобождает область по алгоритму freereg. В противном случае ядро снимает с индекса и с области блокировку, установленную для того, чтобы предотвратить конкуренцию между параллельно выполняющимися процессами (см. раздел 7.5), но оставляет область и ее ресурсы без изменений.
6.5.8 Копирование содержимого области
6.5.8 Копирование содержимого области
Системная функция fork требует, чтобы ядро скопировало содержимое областей процесса. Если же область разделяемая (разделяемый текст команд или разделяемая память), ядру нет надобности копировать область физически; вместо этого оно увеличивает значение счетчика ссылок на область, позволяя родительскому и порожденному процессам использовать область совместно. Если область не является разделяемой и ядру нужно физически копировать ее содержимое, оно выделяет новую запись в таблице областей, новую таблицу страниц и отводит под создаваемую область физическую память. В качестве примера рассмотрим Рисунок 6.27, где процесс A порождает с помощью функции fork процесс B и копирует области родительского процесса. Область команд процесса A является разделяемой, поэтому процесс B может использовать эту область совместно с процессом A. Однако области данных и стека родительского процесса являются его личной принадлежностью (имеют частный тип), поэтому процессу B нужно скопировать их содержимое во вновь выделенные области. При этом даже для областей частного типа физическое копирование области не всегда необходимо, в чем мы убедимся позже (глава 9). На Рисунке 6.28 приведен алгоритм копирования содержимого области (dupreg).
6.5 УПРАВЛЕНИЕ АДРЕСНЫМ ПРОСТРАНСТВОМ ПРОЦЕССА
6.5 УПРАВЛЕНИЕ АДРЕСНЫМ ПРОСТРАНСТВОМ ПРОЦЕССА
В этой главе мы пока говорили о том, каким образом осуществляется переключение контекста между процессами и как контекстные уровни запоминаются в стеке и выбираются из стека, представляя контекст пользовательского уровня как статический объект, не претерпевающий изменений при восстановлении контекста процесса. Однако, с виртуальным адресным пространством процесса работают различные системные функции и, как будет показано в следующей главе, выполняют при этом операции над областями. В этом разделе рассматривается информационная структура области; системные функции, реализующие операции над областями, будут рассмотрены в следующей главе.
Запись таблицы областей содержит информацию, необходимую для описания области. В частности, она включает в себя следующие поля:
Указатель на индекс файла, содержимое которого было первоначально загружено в область Тип области (область команд, разделяемая память, область частных данных или стека) Размер области Местоположение области в физической памяти Статус (состояние) области, представляющий собой комбинацию из следующих признаков: заблокирована запрошена идет процесс ее загрузки в память готова, загружена в память Счетчик ссылок, в котором хранится количество процессов, ссылающихся на данную область.К операциям работы с областями относятся: блокировка области, снятие блокировки с области, выделение области, присоединение области к пространству памяти процесса, изменение размера области, загрузка области из файла в пространство памяти процесса, освобождение области, отсоединение области от пространства памяти процесса и копирование содержимого области. Например, системная функция exec, в которой содержимое исполняемого файла накладывается на адресное пространство задачи, отсоединяет старые области, освобождает их в том случае, если они не являются разделяемыми, выделяет новые области, присоединяет их и загружает содержимым файла. В остальной части раздела операции над областями описываются более детально с ориентацией на модель управления памятью, рассмотренную ранее (с таблицами страниц и группами аппаратных регистров), и с ориентацией на алгоритмы назначения страниц физической памяти и таблиц страниц (глава 9).
6.6.1 События, вызывающие приостанов выполнения, и их адреса
6.6.1 События, вызывающие приостанов выполнения, и их адреса
Как уже говорилось во второй главе, процессы приостанавливаются до наступления определенного события, после которого они "пробуждаются" и переходят в состояние "готовности к выполнению" (с выгрузкой и без выгрузки из памяти). Такого рода абстрактное рассуждение недалеко от истины, ибо в конкретном воплощении совокупность событий отображается на совокупность виртуальных адресов (ядра). Адреса, с которыми связаны события, закодированы в ядре, и их единственное назначение состоит в их использовании в процессе отображения ожидаемого события на конкретный адрес. Как для абстрактного рассмотрения, так и для конкретной реализации события безразлично, сколько процессов одновременно ожидают его наступления. Как результат, возможно возникновение некоторых противоречий. Во-первых, когда событие наступает и процессы, ожидающие его, соответствующим образом оповещаются об этом, все они "пробуждаются" и переходят в состояние "готовности к выполнению". Ядро выводит процессы из состояния приостанова все сразу, а не по одному, несмотря на то, что они в принципе могут конкурировать за одну и ту же заблокированную структуру данных и большинство из них через небольшой промежуток времени опять вернется в состояние приостанова (более подробно об этом шла речь в главах 2 и 3). На Рисунке 6.30 изображены несколько процессов, приостановленных до наступления определенных событий.
6.6.2 Алгоритмы приостанова и возобновления выполнения
6.6.2 Алгоритмы приостанова и возобновления выполнения
На Рисунке 6.31 приведен алгоритм приостанова процесса. Сначала ядро повышает приоритет работы процессора так, чтобы заблокировать все прерывания, которые могли бы (путем создания конкуренции) помешать работе с очередями приостановленных процессов, и запоминает старый приоритет, чтобы восстановить его, когда выполнение процесса будет возобновлено. Процесс получает пометку "приостановленного", адрес приостанова и приоритет запоминаются в таблице процессов, а процесс помещается в хеш-очередь приостановленных процессов. В простейшем случае (когда приостанов не допускает прерываний) процесс выполняет переключение контекста и благополучно "засыпает". Когда приостановленный процесс "пробуждается", ядро начинает планировать его запуск: процесс возвращает сохраненный в алгоритме sleep контекст, восстанавливает старый приоритет работы процессора (который был у него до начала выполнения алгоритма) и возвращает управление ядру.
6.6 ПРИОСТАНОВКА ВЫПОЛНЕНИЯ
6.6 ПРИОСТАНОВКА ВЫПОЛНЕНИЯ
К настоящему моменту мы рассмотрели все функции работы с внутренними структурами процесса, выполняющиеся на нижнем уровне взаимодействия с процессом и обеспечивающие переход в состояние "выполнения в режиме ядра" и выход из этого состояния в другие состояния, за исключением функций, переводящих процесс в состояние "приостанова выполнения". Теперь перейдем к рассмотрению алгоритмов, с помощью которых процесс переводится из состояния "выполнения в режиме ядра" в состояние "приостанова в памяти" и из состояния приостанова в состояния "готовности к запуску" с выгрузкой и без выгрузки из памяти.
6.7 ВЫВОДЫ
6.7 ВЫВОДЫ
Мы завершили рассмотрение контекста процесса. Процессы в системе UNIX могут находиться в различных логических состояниях и переходить из состояния в состояние в соответствии с установленными правилами перехода, при этом информация о состоянии сохраняется в таблице процессов и в адресном пространстве процесса. Контекст процесса состоит из пользовательского контекста и системного контекста. Пользовательский контекст состоит из программ процесса, данных, стека задачи и областей разделяемой памяти, а системный контекст состоит из статической части (запись в таблице процессов, адресное пространство процесса и информация, необходимая для отображения адресного пространства) и динамической части (стек ядра и сохраненное состояние регистров предыдущего контекстного уровня системы), которые запоминаются в стеке и выбираются из стека при выполнении процессом обращений к системным функциям, при обработке прерываний и при переключениях контекста. Пользовательский контекст процесса распадается на отдельные области, которые представляют собой непрерывные участки виртуального адресного пространства и трактуются как самостоятельные объекты использования и защиты. В модели управления памятью, которая использовалась при описании формата виртуального адресного пространства процесса, предполагалось наличие у каждой области процесса своей таблицы страниц. Ядро располагает целым набором различных алгоритмов для работы с областями. В заключительной части главы были рассмотрены алгоритмы приостанова (sleep) и возобновления (wakeup) процессов. Структуры и алгоритмы, описанные в данной главе, будут использоваться в последующих главах при рассмотрении системных функций управления процессами и планирования их выполнения, а также при объяснении различных методов распределения памяти.
6.8 УПРАЖНЕНИЯ
6.8 УПРАЖНЕНИЯ
1. Составьте алгоритм преобразования виртуальных адресов в физические, на входе которого задаются виртуальный адрес и адрес точки входа в частную таблицу областей.
2. В машинах AT&T 3B2 и NSC серии 32000 используется двухуровневая схема трансляции виртуальных адресов в физические (с сегментацией). То есть в системе поддерживается указатель на таблицу страниц, каждая запись которой может адресовать фиксированную часть адресного пространства процесса по смещению в таблице. Сравните алгоритм трансляции виртуальных адресов на этих машинах с алгоритмом, изложенным в тексте при обсуждении модели управления памятью. Подумайте над проблемами производительности и потребности в памяти для размещения вспомогательных таблиц.
3. В архитектуре системы VAX-11 поддерживаются два набора регистров защиты памяти, используемых машиной в процессе трансляции пользовательских адресов. Механизм трансляции используется тот же, что и в предыдущем пункте, за одним исключением: указателей на таблицу страниц здесь два. Если процесс располагает тремя областями - команд, данных и стека - то каким образом, используя два набора регистров, следует производить отображение областей на таблицы страниц? Увеличение стека в архитектуре системы VAX-11 идет в направлении младших виртуальных адресов. Какой тогда вид имела бы область стека? В главе 11 будет рассмотрена область разделяемой памяти: как она может быть реализована в архитектуре системы VAX-11?
4. Составьте алгоритм выделения и освобождения страниц памяти и таблиц страниц. Какие структуры данных следует использовать, чтобы достичь наивысшей производительности или наибольшей простоты реализации алгоритма?
5. Устройство управления памятью MC68451 для семейства микропроцессоров Motorola 68000 допускает выделение сегментов памяти размером от 256 байт до 16 мегабайт. Каждое (физическое) устройство управления памятью поддерживает 32 дескриптора сегментов. Опишите эффективный метод выделения памяти для этого случая. Каким образом осуществлялась бы реализация областей?
6. Рассмотрим отображение виртуальных адресов, представленное на Рисунке 6.5. Предположим, что ядро выгружает процесс (в системе с подкачкой процессов) или откачивает в область стека большое количество страниц (в системе с замещением страниц). Если через какое-то время процесс обратится к виртуальному адресу 68432, будет ли он должен обратиться к соответствующей ячейке физической памяти, из которой он считывал данные до того, как была выполнена операция выгрузки (откачки)? Если нижние уровни системы управления памятью реализуются с использованием таблицы страниц, следует ли эти таблицы располагать в тех же, что и сами страницы, местах физической памяти?
*7. Можно реализовать систему, в которой стек ядра располагается над вершиной стека задачи. Подумайте о достоинствах и недостатках подобной системы.
8. Каким образом, присоединяя область к процессу, ядро может проверить то, что эта область не накладывается на виртуальные адреса областей, уже присоединенных к процессу?
9. Обратимся к алгоритму переключения контекста. Допустим, что в системе готов к выполнению только один процесс. Другими словами, ядро выбирает для выполнения процесс с только что сохраненным контекстом. Объясните, что произойдет при этом.
10. Предположим, что процесс приостановился, но в системе нет процессов, готовых к выполнению. Что произойдет, когда приостановившийся процесс переключит контекст?
11. Предположим, что процесс, выполняемый в режиме задачи, израсходовал выделенный ему квант времени и в результате прерывания по таймеру ядро выбирает для выполнения новый процесс. Объясните, почему переключение контекста произойдет на системном контекстном уровне 2.
12. В системе с замещением страниц процесс, выполняемый в режиме задачи, может столкнуться с отсутствием нужной страницы, которая не была загружена в память. В ходе обработки прерывания ядро считывает страницу из области подкачки и приостанавливается. Объясните, почему переключение контекста (в момент приостанова) произойдет на системном контекстном уровне 2.
13. Процесс использует системную функцию read с форматом вызова read(fd,buf,1024);
в системе с замещением страниц памяти. Предположим, что ядро исполняет алгоритм read для считывания данных в системный буфер, однако при попытке копирования данных в адресное пространство задачи сталкивается с отсутствием нужной страницы, содержащей структуру buf, вследствие того, что она была ранее выгружена из памяти. Ядро обрабатывает возникшее прерывание, считывая отсутствующую страницу в память. Что происходит на каждом из системных контекстных уровней? Что произойдет, если программа обработки прерывания приостановится в ожидании завершения считывания страницы?
14. Что произошло бы, если бы во время копирования данных из адресного пространства задачи в память ядра (Рисунок 6.17) обнаружилось, что указанный пользователем адрес неверен?
*15. При выполнении алгоритмов sleep и wakeup ядро повышает приоритет работы процессора так, чтобы не допустить прерываний, препятствующих ей. Какие отрицательные последствия могли бы возникнуть, если бы ядро не предпринимало этих действий? (Намек: ядро зачастую возобновляет приостановленные процессы прямо из программ обработки прерываний).
*16. Предположим, что процесс пытается приостановиться до наступления события A, но, запуская алгоритм sleep, еще не заблокировал прерывания; допустим, что в этот момент происходит прерывание и программа его обработки пытается возобновить все процессы, приостановленные до наступления события A. Что случится с первым процессом? Не представляет ли эта ситуация опасность? Если да, то может ли ядро избежать ее возникновения?
17. Что произойдет, если ядро запустит алгоритм wakeup для всех процессов, приостановленных по адресу A, в то время, когда по этому адресу не окажется ни одного приостановленного процесса?
18. По одному адресу может приостановиться множество процессов, но ядру может потребоваться возобновление только некоторых из них - тех, которым будет послан соответствующий сигнал. С помощью механизма посылки сигналов можно идентифицировать отдельные процессы. Подумайте, какие изменения следует произвести в алгоритме wakeup для того, чтобы можно было возобновлять выполнение только одного процесса, а не всех процессов, приостановленных по заданному адресу.
19. Обращения к алгоритмам sleep и wakeup в системе Multics имеют следующий синтаксис:
sleep (событие); wakeup (событие, приоритет);Таким образом, в алгоритме wakeup возобновляемому процессу присваивается приоритет. Сравните форму вызова этих алгоритмов с формой вызова события.
7.1 СОЗДАНИЕ ПРОЦЕССА
7.1 СОЗДАНИЕ ПРОЦЕССА
Единственным способом создания пользователем нового процесса в операционной системе UNIX является выполнение системной функции fork. Процесс, вызывающий функцию fork, называется родительским (процесс-родитель), вновь создаваемый процесс называется порожденным (процесс-потомок). Синтаксис вызова функции fork:
pid = fork();В результате выполнения функции fork пользовательский контекст и того, и другого процессов совпадает во всем, кроме возвращаемого значения переменной pid. Для родительского процесса в pid возвращается идентификатор порожденного процесса, для порожденного - pid имеет нулевое значение. Нулевой процесс, возникающий внутри ядра при загрузке системы, является единственным процессом, не создаваемым с помощью функции fork.
В ходе выполнения функции ядро производит следующую последовательность действий:
Отводит место в таблице процессов под новый процесс. Присваивает порождаемому процессу уникальный код идентификации. Делает логическую копию контекста родительского процесса. Поскольку те или иные составляющие процесса, такие как область команд, могут разделяться другими процессами, ядро может иногда вместо копирования области в новый физический участок памяти просто увеличить значение счетчика ссылок на область. Увеличивает значения счетчика числа файлов, связанных с процессом, как в таблице файлов, так и в таблице индексов. Возвращает родительскому процессу код идентификации порожденного процесса, а порожденному процессу - нулевое значение.Реализацию системной функции fork, пожалуй, нельзя назвать тривиальной, так как порожденный процесс начинает свое выполнение, возникая как бы из воздуха. Алгоритм реализации функции для систем с замещением страниц по запросу и для систем с подкачкой процессов имеет лишь незначительные различия; все изложенное ниже в отношении этого алгоритма касается в первую очередь традиционных систем с подкачкой процессов, но с непременным акцентированием внимания на тех моментах, которые в системах с замещением страниц по запросу реализуются иначе. Кроме того, конечно, предполагается, что в системе имеется свободная оперативная память, достаточная для размещения порожденного процесса. В главе 9 будет отдельно рассмотрен случай, когда для порожденного процесса не хватает памяти, и там же будут даны разъяснения относительно реализации алгоритма fork в системах с замещением страниц.
На Рисунке 7.2 приведен алгоритм создания процесса. Сначала ядро должно удостовериться в том, что для успешного выполнения алгоритма fork есть все необходимые ресурсы. В системе с подкачкой процессов для размещения порождаемого процесса требуется место либо в памяти, либо на диске; в системе с замещением страниц следует выделить память для вспомогательных таблиц (в частности, таблиц страниц). Если свободных ресурсов нет, алгоритм fork завершается неудачно. Ядро ищет место в таблице процессов для конструирования контекста порождаемого процесса и проверяет, не превысил ли пользователь, выполняющий fork, ограничение на максимально-допустимое количество параллельно запущенных процессов. Ядро также подбирает для нового процесса уникальный идентификатор, значение которого превышает на единицу максимальный из существующих идентификаторов. Если предлагаемый идентификатор уже присвоен другому процессу, ядро берет идентификатор, следующий по порядку. Как только будет достигнуто максимально-допустимое значение, отсчет идентификаторов опять начнется с 0. Поскольку большинство процессов имеет короткое время жизни, при переходе к началу отсчета значительная часть идентификаторов оказывается свободной.
На количество одновременно выполняющихся процессов накладывается ограничение (конфигурируемое), отсюда ни один из пользователей не может занимать в таблице процессов слишком много места, мешая тем самым другим пользователям создавать новые процессы. Кроме того, простым пользователям не разрешается создавать процесс, занимающий последнее свободное место в таблице процессов, в противном случае система зашла бы в тупик. Другими словами, поскольку в таблице процессов нет свободного места, то ядро не может гарантировать, что все существующие процессы завершатся естественным образом, поэтому новые процессы создаваться не будут. С другой стороны, суперпользователю нужно дать возможность исполнять столько процессов, сколько ему потребуется, конечно, учитывая размер таблицы процессов, при этом процесс, исполняемый суперпользователем, может занять в таблице и последнее свободное место. Предполагается, что суперпользователь может прибегать к решительным мерам и запускать процесс, побуждающий остальные процессы к завершению, если это вызывается необходимостью (см. раздел 7.2.3, где говорится о системной функции kill).
7.2.1 Обработка сигналов
7.2.1 Обработка сигналов
Ядро обрабатывает сигналы в контексте того процесса, который получает их, поэтому чтобы обработать сигналы, нужно запустить процесс. Существует три способа обработки сигналов: процесс завершается по получении сигнала, не обращает внимание на сигнал или выполняет особую (пользовательскую) функцию по его получении. Реакцией по умолчанию со стороны процесса, исполняемого в режиме ядра, является вызов функции exit, однако с помощью функции signal процесс может указать другие специальные действия, принимаемые по получении тех или иных сигналов.
Синтаксис вызова системной функции signal:
oldfunction = signal(signum,function);где signum - номер сигнала, при получении которого будет выполнено действие, связанное с запуском пользовательской функции, function - адрес функции, oldfunction - возвращаемое функцией значение. Вместо адреса функции процесс может передавать вызываемой процедуре signal числа 1 и 0: если function = 1, процесс будет игнорировать все последующие поступления сигнала с номером signum (особый случай, связанный с игнорированием сигнала "гибель потомка", рассматривается в разделе 7.4), если = 0 (значение по умолчанию), процесс по получении сигнала в режиме ядра завершается. В пространстве процесса поддерживается массив полей для обработки сигналов, по одному полю на каждый определенный в системе сигнал. В поле, соответствующем сигналу с указанным номером, ядро сохраняет адрес пользовательской функции, вызываемой по получении сигнала процессом. Способ обработки сигналов одного типа не влияет на обработку сигналов других типов.
7.2.2 Группы процессов
7.2.2 Группы процессов
Несмотря на то, что в системе UNIX процессы идентифицируются уникальным кодом (PID), системе иногда приходится использовать для идентификации процессов номер "группы", в которую они входят. Например, процессы, имеющие общего предка в лице регистрационного shell'а, взаимосвязаны, и поэтому когда пользователь нажимает клавиши "delete" или "break", или когда терминальная линия "зависает", все эти процессы получают соответствующие сигналы. Ядро использует код группы процессов для идентификации группы взаимосвязанных процессов, которые при наступлении определенных событий должны получать общий сигнал. Код группы запоминается в таблице процессов; процессы из одной группы имеют один и тот же код группы.
Для того, чтобы присвоить коду группы процессов начальное значение, приравняв его коду идентификации процесса, следует воспользоваться системной функцией setpgrp. Синтаксис вызова функции:
grp = setpgrp();где grp - новый код группы процессов. При выполнении функции fork процесс-потомок наследует код группы своего родителя. Использование функции setpgrp при назначении для процесса операторского терминала имеет важные особенности, на которые стоит обратить внимание (см. раздел 10.3.5).
7.2.3 Посылка сигналов процессами
7.2.3 Посылка сигналов процессами
Для посылки сигналов процессы используют системную функцию kill. Синтаксис вызова функции:
kill(pid,signum)где в pid указывается адресат посылаемого сигнала (область действия сигнала), а в signum - номер посылаемого сигнала. Связь между значением pid и совокупностью выполняющихся процессов следующая:
Если pid - положительное целое число, ядро посылает сигнал процессу с идентификатором pid. Если значение pid равно 0, сигнал посылается всем процессам, входящим в одну группу с процессом, вызвавшим функцию kill. Если значение pid равно -1, сигнал посылается всем процессам, у которых реальный код идентификации пользователя совпадает с тем, под которым исполняется процесс, вызвавший функцию kill (об этих кодах более подробно см. в разделе 7.6). Если процесс, пославший сигнал, исполняется под кодом идентификации суперпользователя, сигнал рассылается всем процессам, кроме процессов с идентификаторами 0 и 1. Если pid - отрицательное целое число, но не -1, сигнал посылается всем процессам, входящим в группу с номером, равным абсолютному значению pid.Во всех случаях, если процесс, пославший сигнал, исполняется под кодом идентификации пользователя, не являющегося суперпользователем, или если коды идентификации пользователя (реальный и исполнительный) у этого процесса не совпадают с соответствующими кодами процесса, принимающего сигнал, kill завершается неудачно.
В программе, приведенной на Рисунке 7.13, главный процесс сбрасывает установленное ранее значение номера группы и порождает 10 новых процессов. При рождении каждый процесс-потомок наследует номер группы процессов своего родителя, однако, процессы, созданные в нечетных итерациях цикла, сбрасывают это значение. Системные функции getpid и getpgrp возвращают значения кода идентификации выполняемого процесса и номера группы, в которую он входит, а функция pause приостанавливает выполнение процесса до момента получения сигнала. В конечном итоге родительский процесс запускает функцию kill и посылает сигнал о прерывании всем процессам, входящим в одну с ним группу. Ядро посылает сигнал пяти "четным" процессам, не сбросившим унаследованное значение номера группы, при этом пять "нечетных" процессов продолжают свое выполнение.
7.2 СИГНАЛЫ
7.2 СИГНАЛЫ
Сигналы сообщают процессам о возникновении асинхронных событий. Посылка сигналов производится процессами - друг другу, с помощью функции kill, - или ядром. В версии V (вторая редакция) системы UNIX существуют 19 различных сигналов, которые можно классифицировать следующим образом:
Сигналы, посылаемые в случае завершения выполнения процесса, то есть тогда, когда процесс выполняет функцию exit или функцию signal с параметром death of child (гибель потомка); Сигналы, посылаемые в случае возникновения вызываемых процессом особых ситуаций, таких как обращение к адресу, находящемуся за пределами виртуального адресного пространства процесса, или попытка записи в область памяти, открытую только для чтения (например, текст программы), или попытка исполнения привилегированной команды, а также различные аппаратные ошибки; Сигналы, посылаемые во время выполнения системной функции при возникновении неисправимых ошибок, таких как исчерпание системных ресурсов во время выполнения функции exec после освобождения исходного адресного пространства (см. раздел 7.5); Сигналы, причиной которых служит возникновение во время выполнения системной функции совершенно неожиданных ошибок, таких как обращение к несуществующей системной функции (процесс передал номер системной функции, который не соответствует ни одной из имеющихся функций), запись в канал, не связанный ни с одним из процессов чтения, а также использование недопустимого значения в параметре "reference" системной функции lseek. Казалось бы, более логично в таких случаях вместо посылки сигнала возвращать код ошибки, однако с практической точки зрения для аварийного завершения процессов, в которых возникают подобные ошибки, более предпочтительным является именно использование сигналов (*); Сигналы, посылаемые процессу, который выполняется в режиме задачи, например, сигнал тревоги (alarm), посылаемый по истечении определенного периода времени, или произвольные сигналы, которыми обмениваются процессы, использующие функцию kill; Сигналы, связанные с терминальным взаимодействием, например, с "зависанием" терминала (когда сигнал-носитель на терминальной линии прекращается по любой причине) или с нажатием клавиш "break" и "delete" на клавиатуре терминала; Сигналы, с помощью которых производится трассировка выполнения процесса. Условия применения сигналов каждой группы будут рассмотрены в этой и последующих главах.Концепция сигналов имеет несколько аспектов, связанных с тем, каким образом ядро посылает сигнал процессу, каким образом процесс обрабатывает сигнал и управляет реакцией на него. Посылая сигнал процессу, ядро устанавливает в единицу разряд в поле сигнала записи таблицы процессов, соответствующий типу сигнала. Если процесс находится в состоянии приостанова с приоритетом, допускающим прерывания, ядро возобновит его выполнение. На этом роль отправителя сигнала (процесса или ядра) исчерпывается. Процесс может запоминать сигналы различных типов, но не имеет возможности запоминать количество получаемых сигналов каждого типа. Например, если процесс получает сигнал о "зависании" или об удалении процесса из системы, он устанавливает в единицу соответствующие разряды в поле сигналов таблицы процессов, но не может сказать, сколько экземпляров сигнала каждого типа он получил.
Ядро проверяет получение сигнала, когда процесс собирается перейти из режима ядра в режим задачи, а также когда он переходит в состояние приостанова или выходит из этого состояния с достаточно низким приоритетом планирования (см. Рисунок 7.6). Ядро обрабатывает сигналы только тогда, когда процесс возвращается из режима ядра в режим задачи. Таким образом, сигнал не оказывает немедленного воздействия на поведение процесса, исполняемого в режиме ядра. Если процесс исполняется в режиме задачи, а ядро тем временем обрабатывает прерывание, послужившее поводом для посылки процессу сигнала, ядро распознает и обработает сигнал по выходе из прерывания. Таким образом, процесс не будет исполняться в режиме задачи, пока какие-то сигналы остаются необработанными.
На Рисунке 7.7 представлен алгоритм, с помощью которого ядро определяет, получил ли процесс сигнал или нет. Условия, в которых формируются сигналы типа "гибель потомка", будут рассмотрены позже. Мы также увидим, что процесс может игнорировать отдельные сигналы, если воспользуется функцией signal. В алгоритме issig ядро просто гасит индикацию тех сигналов, на которые процесс не желает обращать внимание, и привлекает внимание процесса ко всем остальным сигналам.
7.3 ЗАВЕРШЕНИЕ ВЫПОЛНЕНИЯ ПРОЦЕССА
7.3 ЗАВЕРШЕНИЕ ВЫПОЛНЕНИЯ ПРОЦЕССА
В системе UNIX процесс завершает свое выполнение, запуская системную функцию exit. После этого процесс переходит в состояние "прекращения существования" (см. Рисунок 6.1), освобождает ресурсы и ликвидирует свой контекст. Синтаксис вызова функции:
exit(status);где status - значение, возвращаемое функцией родительскому процессу. Процессы могут вызывать функцию exit как в явном, так и в неявном виде (по окончании выполнения программы: начальная процедура (startup), компонуемая со всеми программами на языке Си, вызывает функцию exit на выходе программы из функции main, являющейся общей точкой входа для всех программ). С другой стороны, ядро может вызывать функцию exit по своей инициативе, если процесс не принял посланный ему сигнал (об этом мы уже говорили выше). В этом случае значение параметра status равно номеру сигнала.
Система не накладывает никакого ограничения на продолжительность выполнения процесса, и зачастую процессы существуют в течение довольно длительного времени. Нулевой процесс (программа подкачки) и процесс 1 (init), к примеру, существуют на протяжении всего времени жизни системы. Продолжительными процессами являются также getty-процессы, контролирующие работу терминальной линии, ожидая регистрации пользователей, и процессы общего назначения, выполняемые под руководством администратора.
На Рисунке 7.14 приведен алгоритм функции exit. Сначала ядро отменяет обработку всех сигналов, посылаемых процессу, поскольку ее продолжение становится бессмысленным. Если процесс, вызывающий функцию exit, возглавляет группу процессов, ассоциированную с операторским терминалом (см. раздел 10.3.5), ядро делает предположение о том, что пользователь прекращает работу, и посылает всем процессам в группе сигнал о "зависании". Таким образом, если пользователь в регистрационном shell'е нажмет последовательность клавиш, означающую "конец файла" (Ctrl-d), при этом с терминалом остались связанными некоторые из существующих процессов, процесс, выполняющий функцию exit, пошлет им всем сигнал о "зависании". Кроме того, ядро сбрасывает в ноль значение кода группы процессов для всех процессов, входящих в данную группу, поскольку не исключена возможность того, что позднее текущий код идентификации процесса (процесса, который вызвал функцию exit) будет присвоен другому процессу и тогда последний возглавит группу с указанным кодом. Процессы, входившие в старую группу, в новую группу входить не будут. После этого ядро просматривает дескрипторы открытых файлов, закрывает каждый из этих файлов по алгоритму close и освобождает по алгоритму iput индексы текущего каталога и корня (если он изменялся).