Руководство FreeBSD

         

Полностью объединенные конфигурации


Первый метод для настройки CLIP с PVC это подключение каждого компьютера к каждому в сети с выделенным PVC. Хотя настройка проста, она непрактична для большого количества компьютеров. В примере предполагается, что в сети есть четыре компьютера, каждый подключенный к ATM сети с помощью карты ATM адаптера. Первый шаг это планирование IP адресов и ATM подключений между компьютерами. Мы используем:

Хост

IP адрес

hostA 192.168.173.1
hostB 192.168.173.2
hostC 192.168.173.3
hostD 192.168.173.4

Для сборки полностью объединенной сети нам потребуется по одному ATM соединению между каждой парой компьютеров:

Компьютеры

VPI.VCI соединение

hostA - hostB 0.100
hostA - hostC 0.101
hostA - hostD 0.102
hostB - hostC 0.103
hostB - hostD 0.104
hostC - hostD 0.105

Значения VPI и VCI на каждом конце соединения конечно могут отличаться, но для упрощения мы предполагаем, что они одинаковы. Затем нам потребуется настроить ATM интерфейсы на каждом хосте:

hostA# ifconfig hatm0 192.168.173.1 up

hostB# ifconfig hatm0 192.168.173.2 up

hostC# ifconfig hatm0 192.168.173.3 up

hostD# ifconfig hatm0 192.168.173.4 up

предполагая, что ATM интерфейс называется hatm0 на всех хостах. Теперь PVC необходимо настроить на hostA (мы предполагаем, что ATM коммутаторы уже настроены, вам необходимо свериться с руководством на коммутатор за информацией по настройке).

hostA# atmconfig natm add 192.168.173.2 hatm0 0 100 llc/snap ubr

hostA# atmconfig natm add 192.168.173.3 hatm0 0 101 llc/snap ubr

hostA# atmconfig natm add 192.168.173.4 hatm0 0 102 llc/snap ubr

hostB# atmconfig natm add 192.168.173.1 hatm0 0 100 llc/snap ubr

hostB# atmconfig natm add 192.168.173.3 hatm0 0 103 llc/snap ubr

hostB# atmconfig natm add 192.168.173.4 hatm0 0 104 llc/snap ubr

hostC# atmconfig natm add 192.168.173.1 hatm0 0 101 llc/snap ubr

hostC# atmconfig natm add 192.168.173.2 hatm0 0 103 llc/snap ubr

hostC# atmconfig natm add 192.168.173.4 hatm0 0 105 llc/snap ubr

hostD# atmconfig natm add 192.168.173.1 hatm0 0 102 llc/snap ubr

hostD# atmconfig natm add 192.168.173.2 hatm0 0 104 llc/snap ubr

hostD# atmconfig natm add 192.168.173.3 hatm0 0 105 llc/snap ubr

Конечно, вместо UBR может быть использован другой тип, если ATM адаптер поддерживает это. В этом случае имя типа дополняется параметрами трафика. Помощь по atmconfig(8) может быть получена командой:

# atmconfig help natm add

или на странице справочника atmconfig(8).

Та же настройка может быть выполнена через /etc/rc.conf. Для hostA это будет выглядеть примерно так:

network_interfaces="lo0 hatm0" ifconfig_hatm0="inet 192.168.173.1 up" natm_static_routes="hostB hostC hostD" route_hostB="192.168.173.2 hatm0 0 100 llc/snap ubr" route_hostC="192.168.173.3 hatm0 0 101 llc/snap ubr" route_hostD="192.168.173.4 hatm0 0 102 llc/snap ubr"

Текущий статус всех маршрутов CLIP может быть получен командой:

hostA# atmconfig natm show



Постоянная конфигурация


Предыдущий пример прекрасно подходит для настройки статического маршрута в работающей системе. Однако, проблема заключается в том, что маршрутная информация не сохранится после перезагрузки FreeBSD. Способ сохранения добавленного маршрута заключается в добавлении его в файл /etc/rc.conf:

# Добавление статического маршрута в Internal Net 2 static_routes="internalnet2" route_internalnet2="-net 192.168.2.0/24 192.168.1.2"

В переменной static_routes находятся строки, разделенные пробелами. Каждая строка означает имя маршрута. В примере выше в static_routes есть только одна строка, это internalnet2. Затем мы добавили переменную route_internalnet2, куда помещены все параметры, которые необходимо передать команде route(8). В примере выше была использована команда:

# route add -net 192.168.2.0/24 192.168.1.2

поэтому нам потребуется "-net 192.168.2.0/24 192.168.1.2".

Как было сказано выше, мы можем добавить в static_routes

более чем одну строку. Это позволит создать несколько статических маршрутов. В следующем примере показано добавление маршрутов для сетей 192.168.0.0/24 и 192.168.1.0/24 (этот маршрутизатор не показан на рисунке выше:

static_routes="net1 net2" route_net1="-net 192.168.0.0/24 192.168.0.1" route_net2="-net 192.168.1.0/24 192.168.1.1"



Построение ядра для бездисковой рабочей станции


При использовании Etherboot, вам потребуется создать конфигурационный файл ядра для бездискового клиента со следующими параметрами (вдобавок к обычным):

options BOOTP # Use BOOTP to obtain IP address/hostname options BOOTP_NFSROOT # NFS mount root filesystem using BOOTP info

Вам может потребоваться использовать BOOTP_NFSV3, BOOT_COMPAT и BOOTP_WIRED_TO (посмотрите LINT в 4.X или NOTES в 5.X).

Эти имена параметров сложились исторически, и могут немного ввести в заблуждение, поскольку включают необязательное использование DHCP и BOOTP в ядре (возможно включение обязательного использования BOOTP или DHCP use).

Постройте ядро (обратитесь к ) и скопируйте его в каталог, указанный в dhcpd.conf.

Замечание: При использовании PXE, сборка ядра с вышеприведенными параметрами не является совершенно необходимой (хотя желательна). Включение этих параметров приведет к выполнению большинства DHCP запросов во время загрузки ядра, с небольшим риском несоответствия новых значений и значений, полученных pxeboot(8) в некоторых особых случаях. Преимущество использования в том, что в качестве побочного эффекта будет установлено имя хоста. Иначе вам потребуется установить имя хоста другим методом, например в клиент-специфичном файле rc.conf.

Замечание: Для включения возможности загрузки с Etherboot, в ядро 5.X необходимо включить устройство hints. Вам потребуется установить в файле конфигурации следующий параметр (см. файл комментариев NOTES):

hints "GENERIC.hints"



Построение маршрутизатора


Сетевой маршрутизатор является обычной системой, которая пересылает пакеты с одного интерфейса на другой. Стандарты Интернет и хорошая инженерная практика не позволяют Проекту FreeBSD включать эту функцию по умолчанию во FreeBSD. Вы можете включить эту возможность, изменив значение следующей переменной в YES в файле :

gateway_enable=YES # Set to YES if this host will be a gateway

Этот параметр изменит значение sysctl(8)-переменной net.inet.ip.forwarding в 1. Если вам временно нужно выключить маршрутизацию, вы можете на время сбросить это значение в 0.

Вашему новому маршрутизатору нужна информация о маршрутах для того, чтобы знать, куда пересылать трафик. Если ваша сеть достаточно проста, то вы можете использовать статические маршруты. С FreeBSD также поставляется стандартный даемон BSD для маршрутизации , который умеет работать с RIP (как версии 1, так и версии 2) и IRDP. Поддержка BGP v4, OSPF v2 и других сложных протоколов маршрутизации имеется в пакете net/zebra. Также существуют и коммерческие продукты, применяемые как более комплексное решение проблемы маршрутизации в сети, такие как GateD®.

Даже когда FreeBSD настроена таким образом, она не полностью соответствует стандартным требованиям Интернет для маршрутизаторов. Однако для обычного использования такое неполное соответствие достаточно.



Практическое использование


У NFS есть много вариантов практического применения. Ниже приводится несколько наиболее широко распространённых способов её использования:

Настройка несколько машин для совместного использования CDROM или других носителей. Это более дешёвый и зачастую более удобный способ установки программного обеспечения на несколько машин.

В больших сетях может оказаться более удобным настроить центральный сервер NFS, на котором размещаются все домашние каталоги пользователей. Эти домашние каталоги могут затем экспортироваться в сеть так, что пользователи всегда будут иметь один и тот же домашний каталог вне зависимости от того, на какой рабочей станции они работают.

Несколько машин могут иметь общий каталог /usr/ports/distfiles. Таким образом, когда вам нужно будет установить порт на несколько машин, вы сможете быстро получить доступ к исходным текстам без их загрузки на каждой машине.



Причины, по которым вам может понадобиться сервер имён


Сервера имён обычно используются в двух видах: авторитетный сервер имён и кэширующий сервер имён.

Авторитетный сервер имён нужен, когда:

нужно предоставлять информацию о DNS остальному миру, отвечая на запросы авторизированно.

зарегистрирован домен, такой, как example.org и в этом домене требуется поставить имена машин в соответствие с их адресами IP.

блоку адресов IP требуется обратные записи DNS (IP в имена хостов).

резервный (slave) сервер имён должен отвечать на запросы о домене, когда основной не работает или не доступен.

Кэширующий сервер имён нужен, когда:

локальный сервер DNS может кэшировать информацию и отвечать на запросы быстрее, чем это происходит при прямом опросе внешнего сервера имён.

требуется уменьшение общего сетевого трафика (DNS составляет около 5% всего трафика Интернет, или чуть больше).

Например, когда кто-нибудь запрашивает информацию о www.FreeBSD.org, то обычно ресолвер обращается к серверу имён вашего провайдера, посылает запрос и ожидает ответа. С локальным кэширующим сервером DNS запрос во внешний мир будет делаться всего один раз. Каждый дополнительный запрос не будет посылаться за пределы локальной сети, потому что информация уже имеется в кэше.



Для иллюстрации различных аспектов маршрутизации


Для иллюстрации различных аспектов маршрутизации мы будем использовать следующий пример использования команды netstat:
% netstat -r
Routing tables
Destination Gateway Flags Refs Use Netif Expire
default outside-gw UGSc 37 418 ppp0 localhost localhost UH 0 181 lo0 test0 0:e0:b5:36:cf:4f UHLW 5 63288 ed0 77 10.20.30.255 link#1 UHLW 1 2421 example.com link#1 UC 0 0 host1 0:e0:a8:37:8:1e UHLW 3 4601 lo0 host2 0:e0:a8:37:8:1e UHLW 0 5 lo0 => host2.example.com link#1 UC 0 0 224 link#1 UC 0 0
В первых двух строках задаются маршрут по умолчанию (который будет описан в следующем разделе) и маршрут на localhost.
Интерфейс (колонка Netif), который указан в этой таблице маршрутов для использования с localhost и который назван lo0, имеет также второе название, устройство loopback. Это значит сохранение всего трафика для указанного адреса назначения внутри, без посылки его по сети, так как он все равно будет направлен туда, где был создан.
Следующими выделяющимися адресами являются адреса, начинающиеся с 0:e0:.... Это аппаратные адреса Ethernet, или MAC-адреса. FreeBSD будет автоматически распознавать любой хост (в нашем примере это test0) в локальной сети Ethernet и добавит маршрут для этого хоста, указывающий непосредственно на интерфейс Ethernet, ed0. С этим типом маршрута также связан параметр таймаута (колонка Expire), используемый в случае неудачной попытки услышать этот хост в течении некоторого периода времени. Если такое происходит, то маршрут до этого хоста будет автоматически удалён. Такие хосты поддерживаются при помощи механизма, известного как RIP (Routing Information Protocol), который вычисляет маршруты к хостам локальной сети при помощи определения кратчайшего расстояния.
FreeBSD добавит также все маршруты к подсетям для локальных подсетей (10.20.30.255 является широковещательным адресом для подсети 10.20.30, а имя example.com является именем домена, связанным с этой подсетью). Назначение link#1
соответствует первому адаптеру Ethernet в машине. Отметьте отсутствие дополнительного интерфейса для этих строк.


В обеих этих группах (хосты и подсети локальной сети) маршруты конфигурируются автоматически даемоном, который называется routed. Если он не запущен, то будут существовать только статически заданные (то есть введенные явно) маршруты.
Строка host1 относится к нашему хосту, который известен по адресу Ethernet. Так как мы являемся посылающим хостом, FreeBSD знает, что нужно использовать loopback-интерфейс (lo0) вместо того, чтобы осуществлять посылку в интерфейс Ethernet.
Две строки host2 являются примером того, что происходит при использовании алиасов в команде ifconfig(8)
(обратитесь к разделу об Ethernet для объяснения того, почему мы это делаем). Символ => после интерфейса lo0 указывает на то, что мы используем не просто интерфейс loopback (так как это адрес, обозначающий локальный хост), но к тому же это алиас. Такие маршруты появляются только на хосте, поддерживающем алиасы; для всех остальных хостов в локальной сети для таких маршрутов будут показаны просто строчки link#1.
Последняя строчка (подсеть назначения 224) имеет отношение к многоадресной посылке, которая будет рассмотрена в другом разделе.
И наконец, различные атрибуты каждого маршрута перечисляются в колонке Flags. Ниже приводится краткая таблица некоторых из этих флагов и их значений:


U Up: Маршрут актуален.
H Host: Адресом назначения является отдельный хост.
G Gateway: Посылать все для этого адреса назначения на указанную удаленную систему, которая будет сама определять дальнейший путь прохождения информации.
S Static: Маршрут был настроен вручную, а не автоматически сгенерирован системой.
C Clone: Новый маршрут сгенерирован на основе указанного для машин, к которым мы подключены. Такой тип маршрута обычно используется для локальных сетей.
W WasCloned: Указывает на то, что маршрут был автоматически сконфигурирован на основе маршрута в локальной сети (Clone).
L Link: Маршрут включает ссылку на аппаратный адрес Ethernet.

Проблемы взаимодействия с другими системами


Текст предоставил John Lind.

Некоторые сетевые адаптеры для систем PC с шиной ISA имеют ограничения, которые могут привести к серьезным проблемам в сети, в частности, с NFS. Эти проблемы не специфичны для FreeBSD, однако эту систему они затрагивают.

Проблема, которая возникает практически всегда при работе по сети систем PC (FreeBSD) с высокопроизводительными рабочими станциями, выпущенными такими производителями, как Silicon Graphics, Inc. и Sun Microsystems, Inc. Монтирование по протоколу NFS будет работать нормально, и некоторые операции также будут выполняться успешно, но неожиданно сервер окажется недоступным для клиент, хотя запросы к и от других систем будут продолжаться обрабатываться. Такое встречается с клиентскими системами, не зависимо от того, является ли клиент машиной с FreeBSD или рабочей станцией. Во многих системах при возникновении этой проблемы нет способа корректно завершить работу клиента. Единственным выходом зачастую является холодная перезагрузка клиента, потому что ситуация с NFS не может быть разрешена.

Хотя ``правильным'' решением является установка более производительного и скоростного сетевого адаптера на систему FreeBSD, имеется простое решение, приводящее к удовлетворительным результатам. Если система FreeBSD является сервером, укажите параметр -w=1024

на клиенте при монтировании. Если система FreeBSD является клиентом, то смонтируйте файловую систему NFS с параметром -r=1024. Эти параметры могут быть заданы в четвертом поле записи в файле fstab клиента при автоматическом монтировании, или при помощи параметра -o в команде mount(8) при монтировании вручную.

Нужно отметить, что имеется также другая проблема, ошибочно принимаемая за приведенную выше, когда серверы и клиенты NFS находятся в разных сетях. Если это тот самый случай, проверьте, что ваши маршрутизаторы пропускают нужную информацию UDP, в противном случае вы ничего не получите, что бы вы ни предпринимали.

В следующих примерах fastws является именем хоста (интерфейса) высокопроизводительной рабочей станции, а freebox является именем хоста (интерфейса) системы FreeBSD со слабым сетевым адаптером.

sharedfs будет являться экспортируемой через


Кроме того, / sharedfs будет являться экспортируемой через NFS файловой системой (обратитесь к страницам справочной системы по команде exports(5)), а /project будет точкой монтирования экспортируемой файловой системы на клиенте. В любом случае, отметьте, что для вашего приложения могут понадобиться дополнительные параметры, такие, как hard, soft или bg.

Пример системы FreeBSD (freebox) как клиента в файле /etc/fstab на машине freebox:

fastws:/sharedfs /project nfs rw,-r=1024 0 0

Команда, выдаваемая вручную на машине freebox:

# mount -t nfs -o -r=1024 fastws:/sharedfs /project

Пример системы FreeBSD в качестве сервера в файле /etc/fstab

на машине fastws:

freebox:/sharedfs /project nfs rw,-w=1024 0 0

Команда, выдаваемая вручную на машине fastws:

# mount -t nfs -o -w=1024 freebox:/sharedfs /project

Практически все 16-разрядные сетевые адаптеры позволят работать без указанных выше ограничений на размер блоков при чтении и записи.

Для тех, кто интересуется, ниже описывается, что же происходит в при появлении этой ошибки, и объясняется, почему ее невозможно устранить. Как правило, NFS работает с ``блоками'' размером 8 килобайт (хотя отдельные фрагменты могут иметь меньшие размеры). Так, пакет Ethernet имеет максимальный размер около 1500 байт, то ``блок'' NFS разбивается на несколько пакетов Ethernet, хотя на более высоком уровне это все тот же единый блок, который должен быть принят, собран и подтвержден как один блок. Высокопроизводительные рабочие станции могут посылать пакеты, которые соответствуют одному блоку NFS, сразу друг за другом, насколько это позволяет делать стандарт. На слабых, низкопроизводительных адаптерах пакеты, пришедшие позже, накладываются поверх ранее пришедших пакетов того же самого блока до того, как они могут быть переданы хосту и блок как единое целое не может быть собран или подтвержден. В результате рабочая станция входит в ситуацию таймаута и пытается повторить передачу, но уже с полным блоком в 8 КБ, и процесс будет повторяться снова, до бесконечности.

Задав размер блока меньше размера пакета Ethernet, мы достигаем того, что любой полностью полученный пакет Ethernet может быть подтвержден индивидуально, и избежим тупиковую ситуацию.

Наложение пакетов может все еще проявляться, когда высокопроизводительные рабочие станции сбрасывают данные на PC-систему, однако повторение этой ситуации не обязательно с более скоростными адаптерами с ``блоками'' NFS. Когда происходит наложение, затронутые блоки будут переданы снова, и скорее всего, они будут получены, собраны и подтверждены.


Профиль последовательного порта (SPP)


Профиль последовательного порта (SPP - Serial Port Profile) позволяет Bluetooth-устройствам осуществлять эмуляцию последовательного порта RS232 (или подобного). Этот профиль покрывает случаи, касающиеся работы унаследованных приложений с Bluetooth в качестве замены кабельному соединению, при это используется абстракция виртуального последовательного порта.

Утилита реализует профиль последовательного порта. В качестве виртуального последовательного порта используется псевдотерминал. В примере ниже показано, как подключиться к сервису Serial Port удалённого устройства. Заметьте, что вы не указываете RFCOMM-канал - rfcomm_sppd(1) может получить его с удалённого устройства через SDP. Если вы хотите переопределить это, укажите RFCOMM-канал явно в командной строке.

# rfcomm_sppd -a 00:07:E0:00:0B:CA -t /dev/ttyp6

rfcomm_sppd[94692]: Starting on /dev/ttyp6...

После подключения псевдотерминал можно использовать как последовательный порт:

# cu -l ttyp6



Протокол RFCOMM


Протокол RFCOMM эмулирует последовательные порты поверх протокола L2CAP. Он основан на ETSI-стандарте TS 07.10. RFCOMM представляет собой простой транспортный протокол, с дополнительными возможностями по эмуляции 9 цепей последовательных портов RS-232 (EIATIA-232-E). Протокол RFCOMM поддерживает одновременно до 60 соединений (каналов RFCOMM) между двумя устройствами Bluetooth.

В рамках RFCOMM полный коммуникационный маршрут включает два приложения, работающие на разных устройствах (конечные коммуникационные точки) с коммуникационным сегментом между ними. RFCOMM предназначен для сокрытия приложений, использующих последовательные порты устройств, в которых они расположены. Коммуникационный сегмент по сути является Bluetooth-связью от одного устройства к другому (прямое соединение).

RFCOMM имеет дело с соединением между устройствами в случае прямого соединения, или между устройством и модемом в сетевом случае. RFCOMM может поддерживать и другие конфигурации, такие, как модули, работающие через беспроводную технологию Bluetooth с одной стороны и предоставляющие проводное соединение с другой стороны.

Во FreeBSD протокол RFCOMM реализован на уровне сокетов Bluetooth.



Работа с бездисковыми станциями


Текст обновил Jean-Francois Dockes. Реорганизовал и улучшил Alex Dupre.

Машина с FreeBSD может загружаться по сети и работать без наличия локального диска, используя файловые системы, монтируемые с сервера NFS. Кроме стандартных конфигурационных файлов, не нужны никакие модификации в системе. Такую систему легко настроить, потому что все необходимые элементы уже готовы:

Имеется по крайней мере два возможных способа загрузки ядра по сети:

PXE: Система Intel® Preboot eXecution Environment является формой загрузочного ПЗУ, встроенного в некоторые сетевые адаптеры или материнские платы. Обратитесь к справочной странице по pxeboot(8) для получения более полной информации.

Порт Etherboot (net/etherboot) генерирует код, который может применяться в ПЗУ для загрузки ядра по сети. Код может быть либо прошит в загрузочный PROM на сетевом адаптере, либо загружен с локальной дискеты (или винчестера), или с работающей системы MS-DOS®. Поддерживаются многие сетевые адаптеры.

Примерный скрипт (/usr/share/examples/diskless/clone_root) облегчает создание и поддержку корневой файловой системы рабочей станции на сервере. Скрипт, скорее всего, потребует некоторых настроек, но он позволит вам быстро начать работу.

Стандартные файлы начального запуска системы, располагающиеся в /etc, распознают и поддерживают загрузку системы в бездисковом варианте.

Подкачка, если она нужна, может выполняться через файл NFS либо на локальный диск.

Существует много способов настройки бездисковой рабочей станции. При этом задействованы многие компоненты, и большинство из них могут быть настроены для удовлетворения ваших вкусов. Далее будет описаны варианты полной настройки системы, при этом упор будет делаться на простоту и совместимость с стандартной системой скриптов начальной загрузки FreeBSD. Описываемая система имеет такие характеристики:

Бездисковые рабочие станции совместно используют файловую систему / в режиме только чтения, а также используют /usr совместно тоже в режиме только чтения.


Корневая файловая система является копией стандартной корневой системы FreeBSD (обычно сервера), с некоторыми настроечными файлами, измененными кем-то специально для бездисковых операций или, возможно, для рабочей станции, которой она предназначена.

Части корневой файловой системы, которые должны быть доступны для записи, перекрываются файловыми системами mfs(8)

(FreeBSD4.X) или md(4)

(FreeBSD 5.X). Любые изменения будут потеряны при перезагрузках системы.

Ядро передается и загружается посредством Etherboot или PXE, и в некоторых ситуациях может быть использован любой из этих методов.

Предостережение: Как описано, эта система не защищена. Она должна располагаться в защищенной части сети, а другие хосты не должны на нее полагаться.

Вся информация этого раздела была протестирована с релизами FreeBSD 4.9-RELEASE и 5.2.1-RELEASE. Текст структурирован преимущественно для использования с 4.X. Отличия для 5.X упоминаются особо.


Работа с /usr, доступной только для чтения


Если бездисковая рабочая станция настроена на запуск X, вам нужно подправить настроечный файл для XDM, который по умолчанию помещает протокол ошибок в /usr.



Распространение маршрутов


Мы уже говорили о том, как мы задаем наши маршруты во внешний мир, но не упоминали о том, как внешний мир находит нас.

Мы уже знаем, что таблицы маршрутизации могут быть настроены так, что весь трафик для некоторого диапазона адресов (в нашем примере это подсеть класса C) может быть направлен заданному хосту в той сети, которая будет перенаправлять входящие пакеты дальше.

При получении адресного пространства, выделенного Вашей сети, Ваш провайдер настроит свои таблицы маршрутизации так, что весь трафик для Вашей подсети будет пересылаться по PPP-соединению к Вашей сети. Но как серверы по всей стране узнают, что Ваш трафик нужно посылать Вашему ISP?

Существует система (подобная распределению информации DNS), которая отслеживает все назначенные пространства адресов и определяет точку подключения к магистрали Интернет. ``Магистралью'' называют главные каналы, по которым идет трафик Интернет внутри страны и по всему миру. Каждая магистральная машина имеет копию основного набора таблиц, согласно которой трафик для конкретной сети направляется по конкретному магистральному каналу, и затем, передаваясь по цепочке провайдеров, он достигает вашей сети.

Задачей вашего провайдера является объявить на магистрали о том, что он отвечает за подключение (и поэтому на него указывает маршрут) вашей сети. Этот процесс называется распространением маршрута.



Распространение маршрутов и автоматическая настройка хостов


Этот раздел поможет вам настроить rtadvd(8) для распространения маршрута IPv6 по умолчанию.

Для включения rtadvd(8) вам понадобится добавить в /etc/rc.conf следующую строку:

rtadvd_enable="YES"

Важно указать интерфейс, на котором выполняется запрос маршрутизатора IPv6. Например, для указания использовать fxp0:

rtadvd_interfaces="fxp0"

Теперь мы должны создать файл настройки, /etc/rtadvd.conf. Вот пример:

fxp0:\ :addrs#1:addr="2001:471:1f11:246::":prefixlen#64:tc=ether:

Замените fxp0 на интерфейс, который вы будете использовать.

Затем, замените 2001:471:1f11:246:: на префикс вашего размещения.

Если у вас выделенная подсеть /64, больше ничего менять не потребуется. Иначе, вам потребуется изменить prefixlen# на корректное значение.



Разное


daytime, time, echo, discard, chargen и auth все являются услугами, предоставляемыми самим inetd.

Сервис auth предоставляет идентификационные сетевые услуги (ident, identd) и поддается настройке.

Обратитесь к справочной странице по inetd(8) для получения более подробной информации.



Режим BSS


Режим BSS является наиболее часто используемым. Режим BSS также называют режимом инфраструктуры. В этом режиме несколько точек доступа беспроводной сети подключаются к проводной сети передачи данных. Каждое беспроводная сеть имеет собственное имя. Это имя является идентификатором SSID сети.

Клиенты беспроводной сети подключаются к этим точкам доступа беспроводной сети. Стандарт IEEE 802.11 определяет протокол, используемый для связи в беспроводных сетях. Клиент сети беспроводного доступа может подключаться к некоторой сети, если задан её SSID. Клиент может также подключаться к любой сети, если SSID не задан.



Режим IBSS


Режим IBSS, также называемый ad-hoc, предназначен для соединений точка-точка. На самом деле существуют два типа режима ad-hoc. Один из них является режимом IBSS, называемый также режимом ad-hoc или IEEE ad-hoc. Этот режим определён стандартами IEEE 802.11. Второй режим называется демонстрационным режимом ad-hoc, или Lucent ad-hoc (или, иногда неправильно, режимом ad-hoc). Это старый, существовавший до появления 802.11, режим ad-hoc, и он должен использоваться только для старых сетей. В дальнейшем мы не будем рассматривать ни один из режимов ad-hoc.



Режимы работы беспроводной связи


Существуют два варианта конфигурации устройств беспроводного доступа 802.11: BSS и IBSS.



Ручная настройка


Предположим, что у нас есть следующая сеть:

В этом сценарии, RouterA это наш компьютер с FreeBSD, который выступает в качестве маршрутизатора в сеть Интернет. Его маршрут по умолчанию настроен на 10.0.0.1, что позволяет ему соединяться с внешним миром. Мы будем предполагать, что RouterB уже правильно настроен и знает все необходимые маршруты (на этом рисунке все просто; добавьте на RouterB маршрут по умолчанию, используя 192.168.1.1 в качестве шлюза).

Если мы посмотрим на таблицу маршрутизации RouterA, то увидим примерно следующее:

% netstat -nr

Routing tables

Internet: Destination Gateway Flags Refs Use Netif Expire default 10.0.0.1 UGS 0 49378 xl0 127.0.0.1 127.0.0.1 UH 0 6 lo0 10.0.0/24 link#1 UC 0 0 xl0 192.168.1/24 link#2 UC 0 0 xl1

С текущей таблицей маршрутизации RouterA не сможет достичь внутренней сети 2 (Internal Net 2). Один из способов обхода этой проблемы -- добавление маршрута вручную. Следующая команда добавляет внутреннюю сеть 2 к таблице маршрутизации RouterA с 192.168.1.2 в качестве следующего узла:

# route add -net 192.168.2.0/24 192.168.1.2

Теперь RouterA сможет достичь любого хоста в сети 192.168.2.0/24.



Серверы NIS


Оригинальные копии всей информации NIS хранится на единственной машине, которая называется главным сервером NIS. Базы данных, которые используются для хранения информации, называются картами NIS. Во FreeBSD эти карты хранятся в /var/yp/[domainname], где [domainname]

является именем обслуживаемого домена NIS. Один сервер NIS может поддерживать одновременно несколько доменов, так что есть возможность иметь несколько таких каталогов, по одному на каждый обслуживаемый домен. Каждый домен будет иметь свой собственный независимый от других набор карт.

Основной и вторичный серверы обслуживают все запросы NIS с помощью даемона ypserv. ypserv отвечает за получение входящих запросов от клиентов NIS, распознавание запрашиваемого домена и отображение имени в путь к соответствующему файлы базы данных, а также передаче информации из базы данных обратно клиенту.



Серверы NIS, которые также являются клиентами NIS


Особое внимание следует уделить использованию ypserv в домене со многими серверами, когда серверные машины являются также клиентами NIS. Неплохо бы заставить серверы осуществить привязку к самим себе, запретив рассылку запросов на привязку и возможно, перекрестную привязку друг к другу. Если один сервер выйдет из строя, а другие будут зависеть от него, то в результате могут возникнуть странные ситуации. Постепенно все клиенты попадут в таймаут и попытаются привязаться к другим серверам, но полученная задержка может быть значительной, а странности останутся, так как серверы снова могут привязаться друг к другу.

Вы можете заставить хост выполнить привязку к конкретному серверу, запустив команду ypbind с флагом -S. Если вы не хотите делать это вручную каждый раз при перезагрузке вашего сервера NIS, то можете добавить в файл /etc/rc.conf такие строки:

nis_client_enable="YES" # run client stuff as well nis_client_flags="-S NIS domain,server"

Дополнительную информацию можно найти на странице справки по ypbind(8).



Service Discovery Protocol (SDP)


Протокол обнаружения сервисов SDP даёт возможность клиентским приложениям осуществлять поиск услуг, предоставляемых серверными приложениями, а также характеристик этих услуг. В перечень атрибутов сервиса включается тип класса предлагаемого сервиса и информация о механизме или протоколе, требуемом для использования сервиса.

SDP подразумевает коммуникации между SDP-сервером и SDP-клиентом. Сервер поддерживает список сервисов, в котором описываются параметры сервисов, связанных с сервером. Каждая запись об услуге содержит информацию об одном сервисе. Клиент может запросить информацию об определённом сервисе, обслуживаемом SDP-сервером, выдавая SDP-запрос. Если клиент или приложение, связанное с клиентом, решат воспользоваться сервисом, то для его использования необходимо открыть отдельное соединение к устройству, предоставляющему сервис. SDP предоставляет механизм обнаружения услуг и их параметров, но не даёт механизма использования этих сервисов.

Обычно SDP-клиент выполняет поиск услуг на основе некоторых желаемых характеристик услуг. Однако иногда возникает необходимость выяснить полный перечень типов услуг, предоставляемых SDP-сервером, не имея никакой информации об имеющихся сервисах. Такой процесс всех предлагаемых сервисов называется обзором (browsing).

Bluetooth SDP сервер sdpd(8) и клиент с интерфейсом командной строки sdpcontrol(8) включены в стандартную поставку FreeBSD. В следующем примере показано, как выполнять запрос на SDP-обзор.

% sdpcontrol -a 00:01:03:fc:6e:ec browse

Record Handle: 00000000 Service Class ID List: Service Discovery Server (0x1000) Protocol Descriptor List: L2CAP (0x0100) Protocol specific parameter #1: u/int/uuid16 1 Protocol specific parameter #2: u/int/uuid16 1

Record Handle: 0x00000001 Service Class ID List: Browse Group Descriptor (0x1001)

Record Handle: 0x00000002 Service Class ID List: LAN Access Using PPP (0x1102) Protocol Descriptor List: L2CAP (0x0100) RFCOMM (0x0003) Protocol specific parameter #1: u/int8/bool 1 Bluetooth Profile Descriptor List: LAN Access Using PPP (0x1102) ver. 1.0


... и так далее. Заметьте, что каждый сервис имеет перечень атрибутов (например, канал RFCOMM). В зависимости от сервиса вам может потребоваться где-то сохранить эти атрибуты. Некоторые реализации Bluetooth не поддерживают просмотр сервисов и могут возвращать пустой список. В этом случае возможен поиск конкретной услуги. В примере ниже показано, как выполнить поиск службы OBEX Object Push (OPUSH):

% sdpcontrol -a 00:01:03:fc:6e:ec search OPUSH

Во FreeBSD предоставление сервисов клиентам Bluetooth осуществляется сервером sdpd(8):

# sdpd

Приложение на локальном сервере, желающее предоставить сервис Bluetooth удаленным клиентам, регистрирует сервис через локального даемона SDP. Пример такого приложения -- . После запуска оно регистрирует Bluetooth LAN сервис через локального даемона SDP.

Список сервисов, зарегистрированных через локальный SDP сервер, может быть получен путем выдачи запроса на просмотр SDP через локальный контрольный канал:

# sdpcontrol -l browse


Сетевые шлюзы и маршруты


Текст предоставил Coranth Gryphon.

Чтобы некоторая машина могла найти в сети другую, должен иметься механизм описания того, как добраться от одной машине к другой. Такой механизм называется маршрутизацией. ``Маршрут'' задаётся парой адресов: ``адресом назначения'' (destination) и ``сетевым шлюзом'' (gateway). Эта пара указывает на то, что если Вы пытаетесь соединиться с адресом назначения, то вам нужно устанавливать связь через ``сетевой шлюз''. Существует три типа адресов назначения: отдельные хосты, подсети и ``маршрут по умолчанию'' (default). ``Маршрут по умолчанию'' (default route) используется, если не подходит ни один из других маршрутов. Мы поговорим немного подробнее о маршрутах по умолчанию позже. Также имеется и три типа сетевых шлюзов: отдельные хосты, интерфейсы (также называемые ``подключениями'' (links)) и аппаратные адреса Ethernet (MAC-адреса).



Шифрование


Шифрование в беспроводной сети имеет важное значение, потому что у вас нет больше возможности ограничить сеть хорошо защищённой областью. Данные вашей беспроводной сети вещаются по всей окрестности, так что любой заинтересовавшийся может их считать. Вот здесь используется шифрование. Шифруя данные, посылаемые в эфир, вы делаете их прямой перехват гораздо более сложным для всех любопытных.

Двумя наиболее широко применяемыми способами шифрации данных между вашим клиентом и точкой доступа являются WEP и ipsec(4).



Ситуации, когда можно использовать мосты


На сегодняшний день есть две ситуации, когда можно использовать мост.




ypserv из поставки FreeBSD имеет встроенную поддержку для обслуживания клиентов NIS v1. Реализация NIS во FreeBSD использует только протокол NIS v2, хотя другие реализации имеют поддержку протокола v1 для совместимости со старыми системами. Даемоны ypbind, поставляемые с такими системами, будут пытаться осуществить привязку к серверу NIS v1, даже если это им не нужно (и они будут постоянно рассылать широковещательные запросы в поиске такого сервера даже после получения ответа от сервера v2). Отметьте, что хотя имеется поддержка обычных клиентских вызовов, эта версия ypserv не отрабатывает запросы на передачу карт v1; следовательно, она не может использоваться в качестве главного или вторичного серверов вместе с другими серверами NIS, поддерживающими только протокол v1. К счастью, скорее всего, в настоящий момент такие серверы практически не используются.


Создание параллельного кабеля


Вы можете приобрести кабель для параллельного порта в большинстве магазинов, торгующих комплектующими. Если вы его не найдете, или же просто хотите знать, как он делается, то следующая таблица поможет вам сделать такой кабель из обычного принтерного кабеля для параллельного порта.

Таблица 24-1. Распайка кабеля для параллельного порта для сетевой работы

A-name

A-End

B-End

Описание

Post/Bit

DATA0

-ERROR

2

15

15

2

Data 0/0x01

1/0x08

DATA1

+SLCT

3

13

13

3

Data 0/0x02

1/0x10

DATA2

+PE

4

12

12

4

Data 0/0x04

1/0x20

DATA3

-ACK

5

10

10

5

Strobe 0/0x08

1/0x40

DATA4

BUSY

6

11

11

6

Data 0/0x10

1/0x80

GND 18-25 18-25 GND -



Терминальные адаптеры ISDN


Терминальные адаптеры (TA) для ISDN выполняют ту же роль, что и модемы для обычных телефонных линий.

Большинство TA используют стандартный набор AT-команд Hayes-модемов, и могут использоваться в качестве простой замены для модемов.

TA будут работать точно так же, как и модемы, за исключением скорости соединения и пропускной способности, которые будут гораздо выше, чем у вашего старого модема. Вам потребуется настроить точно также, как и в случае использования модема. Проверьте, что вы задали скорость работы последовательного порта максимально высокой.

Главным преимуществом использования TA для подключения к провайдеру Интернет является возможность использования динамического PPP. Так как пространство адресов IP истощается все больше, большинство провайдеров не хочет больше выдавать вам статический IP-адрес. Большинство же маршрутизаторов не может использовать динамическое выделение IP-адресов.

TA полностью полагаются на даемон PPP, который используете из-за его возможностей и стабильности соединения. Это позволяет вам при использовании FreeBSD легко заменить модем на ISDN, если у вас уже настроено соединение PPP. Однако, в тоже время любые проблемы, которые возникают с программой PPP, отражаются и здесь.

Если вы хотите максимальной надёжности, используйте на уровне параметра ядра, а не .

Известно, что следующие TA работают с FreeBSD:

Motorola BitSurfer и Bitsurfer Pro

Adtran

Большинство остальных TA, скорее всего, тоже будут работать, производители TA прилагают все усилия для обеспечения поддержки практически всего набора стандартных AT-команд модема.

Как и в случае модемов проблемой использования внешнего TA является потребность в хорошем последовательном адаптере на вашем компьютере.

Вы должны прочесть учебник Последовательные устройства во FreeBSD для того, чтобы в деталях понять работу последовательных устройств и осознать различие между асинхронными и синхронными последовательными портами.

TA, работающий со стандартным последовательным (асинхронным) портом PC, ограничивает вас скоростью 115.2 Кбит/с, хотя реально у вас соединение на скорости 128 Кбит/с. Чтобы использовать 128 Кбит/с, которые обеспечивает ISDN, полностью, вы должны подключить TA к синхронному последовательному адаптеру.

Не обманывайте себя, думая, что покупка встроенного TA поможет избежать проблемы синхронности/асинхронности. Встроенные TA просто уже имеют внутри стандартный последовательный порт PC. Все, что при этом достигается - это экономия дополнительных последовательного кабеля и электрической розетки.

Синхронный адаптер с TA по крайней мере так же быстр, как и отдельный маршрутизатор, а если он работает под управлением машины класса 386 с FreeBSD, то это гораздо более гибкое решение.

Выбор между использованием синхронного адаптера/TA или отдельного маршрутизатора в большей степени является религиозным вопросом. По этому поводу в списках рассылки была некоторая дискуссия. Рекомендуем поискать в обсуждение полностью.



Термины/программы, о которых вы должны знать


Существует несколько терминов и некоторое количество пользовательских программ, которые будут нужны, когда вы будете пытаться сделать NIS во FreeBSD, и в случае создания сервера, и в случае работы в качестве клиента NIS:

Термин

Описание

Имя домена NIS Главный сервер NIS и все его клиенты (включая вторичные серверы), имеют доменное имя NIS. Как и в случае с именем домена Windows NT, имя домена NIS не имеет ничего общего с DNS.
portmap Для обеспечения работы RPC (Remote Procedure Call, Удалённого Вызова Процедур, сетевого протокола, используемого NIS), должен быть запущен даемон portmap. Если даемон portmap не запущен, невозможно будет запустить сервер NIS, или работать как NIS-клиент.
ypbind ``Связывает'' NIS-клиента с его NIS-сервером. Он определяет имя NIS-домена системы, и при помощи RPC подключается к серверу. ypbind является основой клиент-серверного взаимодействия в среде NIS; если на клиентской машине программа ypbind перестанет работать, то эта машина не сможет получить доступ к серверу NIS.
ypserv Программа ypserv, которая должна запускаться только на серверах NIS: это и есть сервер NIS. Если ypserv(8) перестанет работать, то сервер не сможет отвечать на запросы NIS (к счастью, на этот случай предусмотрен вторичный сервер). Есть несколько реализаций NIS (к FreeBSD это не относится), в которых не производится попыток подключиться к другому серверу, если ранее используемый сервер перестал работать. Зачастую единственным средством, помогающим в этой ситуации, является перезапуск серверного процесса (или сервера полностью) или процесса ypbind на клиентской машине.
rpc.yppasswdd Программа rpc.yppasswdd, другой процесс, который запускается только на главных NIS-серверах: это даемон, позволяющий клиентам NIS изменять свои пароли NIS. Если этот даемон не запущен, то пользователи должны будут входить на основной сервер NIS и там менять свои пароли.



Типы машин


Основной сервер NIS. Такой сервер, по аналогии с первичным контроллером домена WindowsNT, хранит файлы, используемые всеми клиентами NIS. Файлы passwd, group и различные другие файлы, используемые клиентами NIS, находятся на основном сервере.

Замечание: Возможно использование одной машины в качестве сервера для более чем одного домена NIS. Однако, в этом введении такая ситуация не рассматривается, и предполагается менее масштабное использование NIS.

Вторичные серверы NIS. Похожие на вторичные контроллеры доменов Windows NT, вторичные серверы NIS содержат копии оригинальных файлов данных NIS. Вторичные серверы NIS обеспечивают избыточность, что нужно в критичных приложениях. Они также помогают распределять нагрузку на основной сервер: клиенты NIS всегда подключаются к тому серверу NIS, который ответил первым, в том числе и к вторичным серверам.

Клиенты NIS. Клиенты NIS, как и большинство рабочих станций Windows NT, аутентифицируются на сервере NIS (или на контроллере домена Windows NT для рабочих станций Windows NT) во время входа в систему.



Точки доступа


Точки доступа представляют собой беспроводные сетевые устройства, позволяющие одному или большему количеству клиентов беспроводной сети использовать эти устройства в качестве центрального сетевого концентратора. При использовании точки доступа все клиенты работают через неё. Зачастую используются несколько точек доступа для полного покрытия беспроводной сетью некоторой зоны, такой, как дом, офис или парк.

Точки доступа обычно имеют несколько подключений к сети: адаптер беспроводной связи и один или большее количество сетевых ethernet-адаптеров для подключения к остальной части сети.

Точки доступа могут быть либо приобретены уже настроенными, либо вы можете создать собственную при помощи FreeBSD и поддерживаемого адаптера беспроводной связи. Несколько производителей выпускают точки беспроводного доступа и адаптеры беспроводной связи с различными возможностями.


Единственными адаптерами, которые на данный момент поддерживаются в режиме BSS (как точка доступа), являются те устройства, что сделаны на основе набора микросхем Prism 2, 2.5 или 3). Полный список можно увидеть в wi(4).



Требования


Для того, чтобы создать беспроводную точку доступа на FreeBSD, вам нужно иметь совместимый адаптер беспроводной связи. На данный момент поддерживаются адаптеры только на основе набора микросхем Prism. Вам также потребуется поддерживаемый FreeBSD адаптер проводной сети (найти такой будет нетрудно, FreeBSD поддерживает множество различных устройств). В этом руководстве мы будем полагать, что вы будете строить сетевой мост (bridge(4)) для пропуска всего трафика между устройством беспроводной связи и сетью, подключенной к обычному Ethernet-адаптеру.

Функциональность hostap, которая используется FreeBSD для организации точки доступа, работает лучше всего с некоторыми версиями микрокода. Адаптеры Prism 2 должны использовать микрокод версии 1.3.4 или более новый. Адаптеры Prism 2.5 и Prism 3 должны использовать микрокод версии 1.4.9. Более старые версии микрокода могут работать нормально, а могут и некорректно. В настоящее время единственным способом обновления адаптеров является использование утилит обновления для Windows®, которые можно получить у производителя ваших адаптеров.


Существует только одно жёсткое условие для настройки FreeBSD в качестве клиента беспроводной сети. Вам нужен адаптер беспроводной связи, поддерживаемый FreeBSD.



Требования к серверу


Есть несколько вещей, которые нужно иметь в виду при выборе машины для использования в качестве сервера NIS. Одной из обескураживающей вещью, касающейся NIS, является уровень зависимости клиентов от серверов. Если клиент не может подключиться к серверу своего домена NIS, зачастую машину просто становится нельзя использовать. Отсутствие информации о пользователях и группах приводит к временной остановке работы большинства систем. Зная это, вы должны выбрать машину, которая не должна подвергаться частым перезагрузкам и не используется для разработки. Сервер NIS в идеале должен быть отдельно стоящей машиной, единственным целью в жизни которой является быть сервером NIS. Если вы работаете в сети, которая не так уж сильно загружена, то можно поместить сервер NIS на машине, на которой запущены и другие сервисы, просто имейте в виду, что если сервер NIS становится недоступным, то это негативно отражается на всех клиентах NIS.



Удалённое устройство не подключается


Некоторые старые Bluetooth-устройства не поддерживают переключение ролей. По умолчанию, когда FreeBSD подтверждает новое соединение, она пытается выполнить переключение роли и стать ведущим устройством. Устройства, которые это не поддерживают, не смогут подключиться. Заметьте, что переключение ролей выполняется при установлении нового соединения, поэтому невозможно выяснить, поддерживает ли удалённое устройство переключение ролей. На локальной машине имеется возможность отключить переключение ролей при помощи HCI-параметра:

# hccontrol -n ubt0hci write_node_role_switch 0



Управление доступом к вашему серверу


По умолчанию ваш сервер NTP будет доступен всем хостам в Интернет. Параметр restrict в файле /etc/ntp.conf позволяет вам контролировать, какие машины могут обращаться к вашему серверу.

Если вы хотите запретить всем машинам обращаться к вашему серверу NTP, добавьте следующую строку в файл /etc/ntp.conf:

restrict default ignore

Если вы хотите разрешить синхронизировать свои часы с вашим сервером только машинам в вашей сети, но запретить им настраивать сервер или быть равноправными участниками синхронизации времени, то вместо указанной добавьте строчку

restrict 192.168.1.0 mask 255.255.255.0 notrust nomodify notrap

где 192.168.1.0 является адресом IP вашей сети, а 255.255.255.0 её сетевой маской.

/etc/ntp.conf может содержать несколько директив restrict. Для получения подробной информации обратитесь к подразделу Access Control Support (Поддержка Управления Доступом) в .



Установка сервера DHCP


Для того, чтобы настроить систему FreeBSD на работу в качестве сервера DHCP, вам необходимо обеспечить присутствие устройства bpf(4), вкомпилированного в ядро. Для этого добавьте строку device bpf

(pseudo-device bpf в FreeBSD4.X) в файл конфигурации вашего ядра. Для получения более полной информации о построении ядер, обратитесь к Гл. 8.

Устройство bpf уже входит в состав ядра GENERIC, поставляемого с FreeBSD, так что вам не нужно создавать собственное ядро для обеспечения работы DHCP.

Замечание: Те, кто обращает особое внимание на вопросы безопасности, должны заметить, что bpf является тем устройством, что позволяет нормально работать снифферам пакетов (хотя таким программам требуются привилегированный доступ). Наличие устройства bpf обязательно для использования DHCP, но если вы очень обеспокоены безопасностью, наверное, вам не нужно включать bpf в ваше ядро только потому, что в отдалённом будущем вы собираетесь использовать DHCP.

Следующим действием, которое вам нужно выполнить, является редактирование примерного dhcpd.conf, который устанавливается в составе порта net/isc-dhcp3-server. По умолчанию это файл /usr/local/etc/dhcpd.conf.sample, и вы должны скопировать его в файл /usr/local/etc/dhcpd.conf перед тем, как его редактировать.



Устранение неполадок


Иногда с распространением маршрута возникают проблемы, и некоторые сайты не могут к вам подключиться. Наверное, самой полезной командой для определения точки неверной работы маршрутизации является traceroute(8). Она также полезна и когда вы сами не можете подключиться к удаленной машине (то есть команда не срабатывает).

Команда запускается с именем удаленного хоста, с которым вы хотите установить соединение, в качестве параметра. Она показывает промежуточные сетевые шлюзы по пути следования, в конце концов достигая адрес назначения или прерывая свою работу из-за отсутствия соединения.

За дополнительной информацией обратитесь к странице Справочника по traceroute(8).



Утилиты


Имеется несколько утилит, которые можно использовать для настройки и отладки вашей беспроводной сети, и здесь мы попытаемся описать некоторые из них и что они могут делать.



Утилиты wicontrol, ancontrol и raycontrol


Это инструменты, которые могут быть использованы для управления поведением адаптера беспроводной связи в сети. В примере выше мы выбирали wicontrol(8), так как нашим адаптером беспроводной сети был интерфейс wi0. Если у вас установлено устройство беспроводного доступа от Cisco, этим интерфейсом будет an0, и тогда вы будете использовать ancontrol(8).



Важные замечания


Есть некоторые действия, которые нужно будет выполнять по-другому, если вы работаете с NIS.

Каждый раз, когда вы собираетесь добавить пользователя в лаборатории, вы должны добавить его только на главном сервере NIS и обязательно перестроить карты NIS. Если вы забудете сделать это, то новый пользователь не сможет нигде войти, кроме как на главном сервере NIS. Например, если в лаборатории нам нужно добавить нового пользователя jsmith, мы делаем вот что:

# pw useradd jsmith

# cd /var/yp

# make test-domain

Вместо pw useradd jsmith вы можете также запустить команду adduser jsmith.

Не помещайте административные учетные записи в карты NIS. Вам не нужно распространять административных пользователей и их пароли на машины, которые не должны иметь доступ к таким учётным записям.

Сделайте главный и вторичные серверы NIS безопасными и минимизируйте их время простоя. Если кто-то либо взломает, либо просто отключит эти машины, то люди без права входа в лабораторию с легкостью получат доступ.

Это основное уязвимое место в любой централизованно администрируемой системе. Если вы не защищаете ваши серверы NIS, вы будете иметь дело с толпой разозлённых пользователей!



Виртуальный хостинг


Apache поддерживает два различных типа виртуального хостинга (Virtual Hosting). Первый метод основан на именах (Name-based Virtual Hosting). Он использует полученные от клиента заголовки HTTP/1.1 для определения имени хоста. Это позволяет многим различным доменам использовать один и тот же IP адрес.

Для настройки Apache на использование этого типа хостинга добавьте в httpd.conf запись подобную следующей:

NameVirtualHost *

Если веб сервер назывался www.domain.tld и вы хотите настроить виртуальный домен для www.someotherdomain.tld, необходимо добавить в httpd.conf следующие записи:

<VirtualHost *> ServerName www.domain.tld DocumentRoot /www/domain.tld <VirtualHost>

<VirtualHost *> ServerName www.someotherdomain.tld DocumentRoot /www/someotherdomain.tld </VirtualHost>

Замените адреса и пути к документам на те, что вы будете использовать.

За дополнительной информацией по настройке виртуальных хостов обращайтесь к официальной документации Apache: http://httpd.apache.org/docs/vhosts/



Включение функций моста


Добавьте строку

net.link.ether.bridge=1

в файл /etc/sysctl.conf для включения функций моста во время работы системы, и строку:

net.link.ether.bridge_cfg=if1,if2

для включения функций моста для указанных интерфейсов (замените if1 и if2 на имена двух ваших сетевых интерфейсов). Если вы хотите, чтобы проходящие через мост пакеты фильтровались посредством , вы должны добавить строчку:

net.link.ether.bridge_ipfw=1

Во FreeBSD5.2-RELEASE и последующих версиях нужно использовать вместо указанных следующие строки:

net.link.ether.bridge.enable=1 net.link.ether.bridge.config=if1,if2

net.link.ether.bridge.ipfw=1



Bluetooth является беспроводной технологией для


Bluetooth является беспроводной технологией для создания персональных сетей на расстоянии не более 10 метров, работающей на частоте 2.4 ГГц, которая не подлежит лицензированию. Обычно такие сети формируются из портативных устройств, таких, как сотовые телефоны, КПК и лаптопы. В отличие от Wi-Fi, другой популярной беспроводной технологии, Bluetooth предоставляет более высокий уровень сервиса, например, файловые серверы типа FTP, передачу файлов, голоса, эмуляцию последовательного порта и другие.
Стек протоколов Bluetooth во FreeBSD реализован на основе технологии Netgraph (обратитесь к ). Широкий спектр USB-устройств Bluetooth поддерживается драйвером ng_ubt(4). Устройства Bluetooth на основе набора микросхем Broadcom BCM2033 поддерживается драйвером ng_bt3c(4). Устройства Bluetooth, работающие через последовательные и UART-порты, поддерживаются драйверами sio(4), ng_h4(4) и hcseriald(8). В этом разделе описывается использование Bluetooth-устройств, подключаемых через USB. Поддержка Bluetooth имеется во FreeBSD 5.0 и более новых версиях системы.

Выбор имени домена NIS


Это имя не должно быть ``именем домена'', которое вы использовали. Более точно это имя называется ``именем домена NIS''. Когда клиент рассылает запросы на получение информации, он включает в них имя домена NIS, частью которого является. Таким способом многие сервера в сети могут указать, какой сервер на какой запрос должен отвечать. Думайте о домене NIS как об имени группы хостов, которые каким-то образом связаны.

Некоторые организации в качестве имени домена NIS используют свой домен Интернет. Это не рекомендуется, так как может вызвать проблемы в процессе решения сетевых проблем. Имя домена NIS должно быть уникальным в пределах вашей сети и хорошо, если оно будет описывать группу машин, которые представляет. Например, художественный отдел в компании Acme Inc. может находиться в домене NIS с именем ``acme-art''. В нашем примере положим, что мы выбрали имя test-domain.

Несмотря на это, некоторые операционные системы (в частности, SunOS) используют свое имя домена NIS в качестве имени домена Интернет. Если одна или более машин в вашей сети имеют такие ограничения, вы обязаны использовать имя домена Интернет в качестве имени домена NIS.



Выбор подходящих серверов NTP


Для синхронизации ваших часов вам нужно найти для использования один или большее количество серверов NTP. Ваш сетевой администратор или провайдер могут иметь сервер NTP для этой цели--обратитесь к ним, так ли это в вашем случае. Существует онлайн список общедоступных серверов NTP, которым можно воспользоваться для поиска ближайшего к вам сервера NTP. Не забудьте выяснить политику выбранного вами сервера и спросить разрешения, если это требуется.

Выбор нескольких несвязанных серверов NTP является хорошей идеей в том случае, если один из используемых вами серверов станет недоступным или его часы неточны. ntpd(8) использует ответы, которые он получает от других серверов с умом--он делает предпочтение надежным серверам.



Выбор сетевого адаптера


Для работы моста требуются по крайней мере два сетевых адаптера. К сожалению, не все сетевые адаптеры во FreeBSD4.0 поддерживают функции моста. Прочтите страницу Справочника по для выяснения подробностей о поддерживаемых адаптерах.

Перед тем, как продолжить, сначала установите и протестируйте два сетевых адаптера.



WEP


WEP является сокращением от Wired Equivalency Protocol (Протокол Соответствия Проводной сети). WEP является попыткой сделать беспроводные сети такими же надёжными и безопасными, как проводные. К сожалению, он был взломан и сравнительно легко поддаётся вскрытию. Это означает также, что он не тот протокол, на который следует опираться, когда речь идёт о шифровании критически важных данных.

Он лучше, чем ничего, так что используйте следующую команду для включения WEP в вашей новой точке доступа FreeBSD:

# ifconfig wi0 inet up ssid my_net wepmode on wepkey 0x1234567890 media DS/11Mbps mediaopt hostap

Вы можете включить WEP на клиенте следующей командой:

# ifconfig wi0 inet 192.168.0.20 netmask 255.255.255.0

ssid my_net wepmode on wepkey 0x1234567890

Отметьте, что вы должны заменить 0x1234567890 на более уникальный ключ.



Загрузка с PXE


По умолчанию, pxeboot(8) загружает ядро через NFS. Он может быть скомпилирован для использования вместо него TFTP путем указания параметра LOADER_TFTP_SUPPORT в /etc/make.conf. Смотрите комментарии в /etc/defaults/make.conf (или /usr/share/examples/etc/make.conf систем 5.X) с инструкциями.

Есть два не документированных параметра make.conf, которые могут быть полезны для настройки бездискового компьютера с последовательной консолью: BOOT_PXELDR_PROBE_KEYBOARD, и BOOT_PXELDR_ALWAYS_SERIAL (последняя существует только в FreeBSD5.X).

Для использования PXE при загрузке компьютера вам обычно потребуется выбрать параметр Boot from network

(загрузка по сети) в настройках BIOS, или нажать функциональную клавишу во время загрузки PC.



Запрет входа некоторых пользователей


В нашей лаборатории есть машина basie, о которой предполагается, что она является исключительно факультетской рабочей станцией. Мы не хотим исключать эту машину из домена NIS, однако файл passwd на главном сервере NIS содержит учетные записи как для работников факультета, так и студентов. Что мы можем сделать?

Есть способ ограничить вход некоторых пользователей на этой машине, даже если они присутствуют в базе данных NIS. Чтобы это сделать, вам достаточно добавить -username в конец файла /etc/master.passwd на клиентской машине, где username является именем пользователя, которому вы хотите запретить вход. Рекомендуется сделать это с помощью утилиты vipw, так как vipw проверит ваши изменения в /etc/master.passwd, а также автоматически перестроит базу данных паролей по окончании редактирования. Например, если мы хотим запретить пользователю bill осуществлять вход на машине basie, то мы сделаем следующее:

basie# vipw

[add -bill to the end, exit]

vipw: rebuilding the database... vipw: done

basie# cat /etc/master.passwd

root:[password]:0:0::0:0:The super-user:/root:/bin/csh toor:[password]:0:0::0:0:The other super-user:/root:/bin/sh daemon:*:1:1::0:0:Owner of many system processes:/root:/sbin/nologin operator:*:2:5::0:0:System &:/:/sbin/nologin bin:*:3:7::0:0:Binaries Commands and Source,,,:/:/sbin/nologin tty:*:4:65533::0:0:Tty Sandbox:/:/sbin/nologin kmem:*:5:65533::0:0:KMem Sandbox:/:/sbin/nologin games:*:7:13::0:0:Games pseudo-user:/usr/games:/sbin/nologin news:*:8:8::0:0:News Subsystem:/:/sbin/nologin man:*:9:9::0:0:Mister Man Pages:/usr/share/man:/sbin/nologin bind:*:53:53::0:0:Bind Sandbox:/:/sbin/nologin uucp:*:66:66::0:0:UUCP pseudo-user:/var/spool/uucppublic: /usr/libexec/uucp/uucico xten:*:67:67::0:0:X-10 daemon:/usr/local/xten:/sbin/nologin pop:*:68:6::0:0:Post Office Owner:/nonexistent:/sbin/nologin nobody:*:65534:65534::0:0:Unprivileged user:/nonexistent:/sbin/nologin +::::::::: -bill

basie#



Запуск Apache


Apache не запускается из inetd, как это делают многие другие сетевые серверы. Он настроен для автономного запуска, чтобы обеспечивать большую производительность при обработке HTTP запросов от браузеров клиентов. Для упрощения запуска, остановки и перезапуска сервера существует shell скрипт. Для запуска Apache в первый раз просто выполните:

# /usr/local/sbin/apachectl start

Вы можете остановить сервер в любой момент, выполнив:

# /usr/local/sbin/apachectl stop

После внесения любых изменений в файл настроек, вам потребуется перезапустить сервер:

# /usr/local/sbin/apachectl restart

Для запуска Apache при старте системы, добавьте в /etc/rc.conf следующую строку:

apache_enable="YES"

Если вы хотите передать программе Apache httpd дополнительные параметры командной при загрузке системы, они могут быть помещены в дополнительную строку rc.conf:

apache_flags=""

Теперь, когда веб сервер запущен, вы можете просмотреть свой веб сайт, задав в строке браузера адрес http://localhost/. По умолчанию отображается веб страница /usr/local/www/data/index.html.



Запуск BIND


Так как сервер имён BIND устанавливается по умолчанию, его настройка сравнительно проста.

Чтобы даемон named запускался во время загрузки, поместите в /etc/rc.conf следующую строку:

named_enable="YES"

Для запуска даемона вручную (после его настройки):

# ndc start



Запуск named в песочнице


Для дополнительной безопасности вам может потребоваться запускать named(8) с правами непривилегированного пользователя и настроить его на выполнение chroot(8) в каталог-песочницу. Это позволит сделать недоступным для даемона named все, что расположено вне песочницы. Если named будет взломан, то это поможет уменьшить возможный ущерб. По умолчанию во FreeBSD имеются пользователь и группа с именами bind, которые предназначены именно для такого использования.

Замечание: Многие рекомендуют вместо настройки named

на использование chroot, запускать named внутри jail(8). В этом разделе такой подход не рассматривается.

Так как named не сможет обратиться ни к чему вне песочницы (например, совместно используемым библиотекам, сокетам протоколов и так далее), то нужно выполнить несколько шагов, чтобы named смог работать нормально. В следующем списке предполагается, что каталогом песочницы является /etc/namedb и что вы не делали никаких изменений в содержимом этого каталога. Выполните следующие шаги, работая как пользователь root:

Создайте все каталоги, которые ожидает увидеть named:

# cd /etc/namedb

# mkdir -p bin dev etc var/tmp var/run master slave

# chown bind:bind slave var/*

Программе named нужен доступ с правом записи в эти каталоги, так что это все, что мы ей предоставим.

Измените и создайте базовые файлы зоны и настроек:

# cp /etc/localtime etc

# mv named.conf etc && ln -sf etc/named.conf

# mv named.root master

# sh make-localhost && mv localhost.rev localhost-v6.rev master

# cat > master/named.localhost $ORIGIN localhost. $TTL 6h @ IN SOA localhost. postmaster.localhost. ( 1 ; serial 3600 ; refresh 1800 ; retry 604800 ; expiration 3600 ) ; minimum IN NS localhost. IN A 127.0.0.1 ^D

Это позволит программе named протоколировать правильное время в .

Если вы используете FreeBSD версии ранее 4.9-RELEASE, то постройте статически скомпонованную копию named-xfer и скопируйте её в песочницу:

# cd /usr/src/lib/libisc

# make cleandir && make cleandir && make depend && make all


# cd /usr/src/lib/libbind

# make cleandir && make cleandir && make depend && make all

# cd /usr/src/libexec/named-xfer

# make cleandir && make cleandir && make depend && make NOSHARED=yes all

# cp named-xfer /etc/namedb/bin && chmod 555 /etc/namedb/bin/named-xfer

После установки статически скомпонованного named-xfer, во избежание появления старых копий библиотек и программ в дереве исходного кода, требуется некоторая зачистка:

# cd /usr/src/lib/libisc

# make cleandir

# cd /usr/src/lib/libbind

# make cleandir

# cd /usr/src/libexec/named-xfer

# make cleandir

Иногда при выполнении этого шага возникают ошибки. Если это случилось, выполните такую команду:

# cd /usr/src && make cleandir && make cleandir

и удалите ваше дерево /usr/obj:

# rm -fr /usr/obj && mkdir /usr/obj

При этом из вашего дерева исходных текстов будет удалён весь ``мусор'', и повторение вышеописанных шагов должно выполниться успешно.

Если вы используете FreeBSD 4.9-RELEASE или более позднюю версию, то копия named-xfer в каталоге /usr/libexec по умолчанию является статически скомпонованной, и вы можете просто скопировать её в песочницу при помощи команды cp(1).

Создайте файл устройства dev/null, который named может видеть и писать в него:

# cd /etc/namedb/dev && mknod null c 2 2

# chmod 666 null

Создайте символическую ссылку /var/run/ndc на /etc/namedb/var/run/ndc:

# ln -sf /etc/namedb/var/run/ndc /var/run/ndc

Замечание: Это просто для того, чтобы не задавать опцию -c при каждом запуске ndc(8). Так как содержимое каталога /var/run удаляется при загрузке, и если это показалось вам полезным, то вы можете добавить эту команду в crontab для root с использованием параметра @reboot. Обратитесь к справочной странице по crontab(5) для получения более полной информации относительно этого.

Настройте на создание дополнительного протоколирующего сокета log, в который может писать named. Для этого добавьте -l /etc/namedb/dev/log к переменной syslogd_flags из файла /etc/rc.conf.



Задайте запуск named и выполнение chroot в песочницу, добавив следующее в /etc/rc.conf:

named_enable="YES" named_flags="-u bind -g bind -t /etc/namedb /etc/named.conf"

Замечание: Заметьте, что конфигурационный файл /etc/named. conf именуется по полному имени относительно песочницы, то есть в вышеприведённой строке указывается файл, который на самом деле является файлом /etc/namedb/etc/named.conf.

Следующим шагом является редактирование файла /etc/namedb/etc/named.conf так, чтобы named знал, какую зону загружать и где найти их на диске. Далее следует прокомментированный пример (все, что специально не прокомментировано, ничем не отличается от настройки сервера DNS, работающего не в песочнице):

options { directory "/";

named-xfer "/bin/named-xfer";

version ""; // Не выдавайте версию BIND query-source address * port 53; }; // управляющий сокет ndc controls { unix "/var/run/ndc" perm 0600 owner 0 group 0; }; // Далее следуют зоны: zone "localhost" IN { type master; file "master/named.localhost";

allow-transfer { localhost; }; notify no; }; zone "0.0.127.in-addr.arpa" IN { type master; file "master/localhost.rev"; allow-transfer { localhost; }; notify no; }; zone "0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.ip6.int" { type master; file "master/localhost-v6.rev"; allow-transfer { localhost; }; notify no; }; zone "." IN { type hint; file "master/named.root"; }; zone "private.example.net" in { type master; file "master/private.example.net.db"; allow-transfer { 192.168.10.0/24; }; }; zone "10.168.192.in-addr.arpa" in { type slave; masters { 192.168.10.2; }; file "slave/192.168.10.db";

};

В директиве directory указан каталог /, так как все файлы, которые нужны для named, находятся внутри этого каталога (вспомните, что это равнозначно ``обычному'' пользовательскому /etc/namedb).

Задает полный путь к двоичному выполнимому файлу named-xfer

(внутри границ видимости named). Это необходимо, так как named компилируется с тем, чтобы брать named-xfer по умолчанию из /usr/libexec.

Задает имя файла (относительно директивы directory выше), в котором named может найти файл зоны для этой зоны.

Задает имя файла (относительно директивы directory выше), в котором named должен записывать копию файла зоны для этой зоны после успешной передачи ее с основного сервера. Вот почему нам нужно изменить владельца каталога slave на bind на этапах настроек выше.

После выполнения шагов выше либо перезагрузите ваш сервер, либо перезапустите syslogd(8) и запустите , не забыв использовать новые опции, заданные в syslogd_flags и named_flags. Теперь named должен заработать в песочнице!


Запуск Samba


Для запуска Samba при загрузке системы, добавьте в /etc/rc.conf следующую строку:

samba_enable="YES"

Затем вы можете запустить Samba в любой момент, набрав:

# /usr/local/etc/rc.d/samba.sh start

Starting SAMBA: removing stale tdbs : Starting nmbd. Starting smbd.

Samba состоит из трех отдельных даемонов. Вы можете видеть, что nmbd и smbd запускаются скриптом samba.sh. Если вы включили сервис разрешения имен winbind в smb.conf, то увидите также запуск даемона winbindd.

Вы можете остановить Samba в любой момент, набрав:

# /usr/local/etc/rc.d/samba.sh stop

Samba это сложный программный набор с функциональностью, позволяющей полную интеграцию в сети Microsoft Windows. За дальнейшей информацией о функциях, выходящих за рамки описанной здесь базовой установки, обращайтесь к .



Запуск сервера NTP


Для того, чтобы сервер NTP запускался при загрузке, добавьте строку xntpd_enable="YES" в файл /etc/rc.conf. Если вы хотите передать дополнительные опции в ntpd(8), то отредактируйте параметр xntpd_flags в файле /etc/rc.conf.

Для запуска сервера без перезагрузки вашей машины, выполните команду ntpd, не забыв задать дополнительные параметры из переменной xntpd_flags в файле /etc/rc.conf. К примеру:

# ntpd -p /var/run/ntpd.pid

Замечание: Во FreeBSD5.X различные параметры из /etc/rc.conf были переименованы. В частности, в списке параметров вам необходимо заменить каждую строчку xntpd на ntpd.